Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-22T06:41:45.273Z Has data issue: false hasContentIssue false

5 - Health challenges to aquatic animals in the globalization era

Published online by Cambridge University Press:  10 August 2009

Mohamed Faisal
Affiliation:
Departments of Pathobiology and Diagnostic Investigation and Fisheries and Wildlife Michigan State University S-110 Plant Biology Building East Lansing, MI 48824 USA
William W. Taylor
Affiliation:
Michigan State University
Michael G. Schechter
Affiliation:
Michigan State University
Lois G. Wolfson
Affiliation:
Michigan State University
Get access

Summary

INTRODUCTION

As the globalization era progresses, societies and world economies have been transformed dramatically, mainly through increased international trade and cultural exchange. Advances in technology, major biotechnological innovations, and greater international movements of people and commodities have created a system that metaphorically unites the world into one global village; goods and services produced in one part of the world can easily be transported and made available in all parts of the globe. As much as the globalization era has created new challenges, it has also inherited many unresolved challenges of the past. How will a world, divided into over 200 sovereign countries and territories, cope with these unthinkably fast globalization processes, while preserving the environmental integrity of our planet? In particular, achieving a balance among globalization processes, the growing economy, preservation of biodiversity, protection against biosecurity threats, and safeguarding the health of the fragile ecosystem seems to be a distant dream that would be difficult to realize.

Concomitant with the emergence of the globalization era, mass mortalities have been observed over a wide range of farmed and wild aquatic animals, including fish, mollusks, crustaceans, harbor seals, manatees, turtles, frogs, coral organisms, and sea urchins (Heide-Jorgensen and Harkonen 1992; Lafferty and Kuris 1993; Moyer et al. 1993; Littler and Littler 1995; Altstatt et al. 1996; Rahimian and Thulin 1996; Jones et al. 1997; Bossart et al. 1998; Ford et al. 1999; Harvell et al. 1999; Rosenberg and Loya 2004).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alderman, D. J. 1996. Geographical spread of bacterial and fungal diseases of crustaceans. Revue scientifique et technique de l'Office International des Epizooties 15: 603–632.CrossRefGoogle ScholarPubMed
Alderman, D. J., Polglase, J. L., and Reeve, I. 1990. Signal crayfish as vectors in crayfish plague in Britain. Aquaculture 86: 3–6.CrossRefGoogle Scholar
Altstatt, J. M., Ambrose, R. F., Engle, J. M., et al. 1996. Recent declines of black abalone Haliotis cracherodii on the mainland coast of central California. Marine Ecology Progress Series 142: 185–192.CrossRefGoogle Scholar
Anderson, I. G., Prior, H. C., Rodwell, B. G., and Harris, G. O. 1993. Iridovirus-like virions in imported dwarf gourami (Colisa lalia) with systemic amoebiasis. Australian Veterinary Journal 70: 66–67.CrossRefGoogle ScholarPubMed
Arthur, J. R. 1996. Fish and shellfish quarantine: the reality for Asia-Pacific. In The Health Management in Asian Aquaculture, FAO Fisheries Technical Paper No. 360, eds. Subasinghe, R. P., Arthur, J. R., and Shariff, M.. Rome: Food and Agriculture Organization of the United Nations, pp. 11–28.Google Scholar
Arthur, R. and Shariff, M. 1991. Towards international fish disease control in Southeast Asia. Proceedings of INFOFISH International, Kuala Lumpur, vol. 3, pp. 45–48.Google Scholar
Barinaga, M. 1990. Fish, money and science in Puget Sound. Science 247: 631.CrossRefGoogle ScholarPubMed
Barlough, J. E., Mcdowell, T. D., Milani, A., et al. 1995. Nested polymerase chain reaction for detection of Enterocytozoon salmonis genomic DNA in chinook salmon Oncorhynchus tshawytscha. Diseases of Aquatic Organisms 23: 17–23.CrossRefGoogle Scholar
Bartley, D. M. and Subasinghe, R. P. 1996. Historical aspects of international movement of living aquatic species. Revue scientifique et technique de l'Office International des Epizooties 15: 387–400.CrossRefGoogle ScholarPubMed
Bartley, D. M., Subasinghe, R., and Coates, D. 1996. Draft Framework for the Responsible Use of Introduced Species. Dublin: European Inland Fisheries Advisory Commission (EIFAC).Google Scholar
Batts, W. N., Arakawa, C. K., Bernard, J., and Winton, J. R. 1993. Isolates of viral hemorrhagic septicemia virus from North America and Europe can be detected and distinguished by DNA probes. Diseases of Aquatic Organisms 17: 67–71.CrossRefGoogle Scholar
Bernard, J., Bremont, M., and Winton, J. R. 1992. Nucleocapsid gene sequence of a North American isolate of viral haemorrhagic septicaemia virus, a fish rhabdovirus. Journal of General Virology 73: 1011–1014.CrossRefGoogle ScholarPubMed
Bernoth, E. M., Murray, G., Rickard, M. D., and Hurry, G. 1999. Approaches to managing aquatic animal health in Australia. Revue scientifique et technique de l'Office International des Epizooties 18: 228–238.CrossRefGoogle ScholarPubMed
Berry, T. M., Park, D. L., and Lightner, D. V. 1994. Comparison of the microbial quality of raw shrimp from China, Ecuador, or Mexico at both wholesale and retail levels. Journal of Food Protection 57: 150–153.CrossRefGoogle Scholar
Blanc, G., Bergot, F., and Vigneux, E. 1997. L'introduction des agents pathogènes dans les ecosystèmes aquatiques: aspects théoriques et réalités. Bulletin français de la peche et de la pisciculture 344/345: 489–515.CrossRefGoogle Scholar
Bondad-Reantaso, M. G., Subasinghe, R. P., Arthur, J. R., et al. 2005. Disease and health management in Asian aquaculture. Veterinary Parasitology 132: 249–272.CrossRefGoogle ScholarPubMed
Bossart, G. D., Baden, D. G., Ewing, R., Roberts, B., and Wright, S. 1998. Brevetoxicosis in manatees (Trichechus manatus latirostris) from the 1996 epizootic: gross, histologic, and immunohistochemical features. Toxicologic Pathology 26: 276–282.CrossRefGoogle ScholarPubMed
Brückner, G. K. 1996. Review of disease control in aquaculture in the Republic of South Africa. Revue scientifique et technique de l'Office International des Epizooties 15: 703–710.CrossRefGoogle ScholarPubMed
Cameron, A. 2002. Survey Toolbox for Aquatic Animal Diseases: A Practical Manual and Software Package. Canberra, ACT: Australian Centre for International Agricultural Research.Google Scholar
Carey, T. G. 1996. Finfish health protection regulations in Canada. Revue scientifique et technique de l'Office International des Epizooties 15: 647–658.CrossRefGoogle Scholar
Campos Larrain, M. C. and Valenzuela Alfaro, M. E. 1996. Chilean legislation for the control of diseases of aquatic species. Revue scientifique et technique de l'Office International des Epizooties 15: 675–686.CrossRefGoogle ScholarPubMed
Chilmonczyk, S., Cox, W. T., and Hedrick, R. P. 1991. Enterocytozoon salmonis n.s.: an intranuclear microsporidian from salmonid fish. Journal of Protozoology 38: 264–269.CrossRefGoogle Scholar
Cockings, S. and Martin, D. 2005. Zone design for environment and health studies using pre-aggregated data. Social Science and Medicine 60: 2729–2742.CrossRefGoogle ScholarPubMed
Coward, K. and Little, D. C. 2001. Culture of the “aquatic chicken”: present concerns and future prospects. Biologist (London) 48: 12–16.Google ScholarPubMed
Cowx, I. G. 2000. Management and Ecology of River Fisheries. Oxford, UK: Fishing News Books.CrossRefGoogle Scholar
Cunningham, C. O. 2002. Molecular diagnosis of fish and shellfish diseases: present status and potential use in disease control. Aquaculture 206: 19–55.CrossRefGoogle Scholar
Daelman, W. 1996. Animal health and the trade in aquatic animals within and to the European Union. Revue scientifique et technique de l'Office International des Epizooties 15: 711–722.CrossRefGoogle ScholarPubMed
Davies, A. J. and Smit, N. J. 2001. The life cycle of Haemogregarina bigemina (Adeleina: Haemogregarinidae) in South African hosts. Folia Parasitologica 48: 169–177.CrossRefGoogle Scholar
Dikkeboom, A. L., Radi, C., Toohey-Kurth, K., et al. 2004. First report of Spring Viremia of Carp Virus (SVCV) in wild common carp in North America. Journal of Aquatic Animal Health 16: 169–178.CrossRefGoogle Scholar
Djajadiredja, R., Panjaitan, T. H., Rukyani, A., et al. 1983. Country reports: Indonesia. In Fish Quarantine and Fish Diseases in Southeast Asia, eds. Davy, F. B. and Chouinard, A.. Ottawa, Ontario: International Development Research Centre, pp. 19–30.Google Scholar
Doyle, K. A., Beers, P. T., and Wilson, D. W. 1996. Quarantine of aquatic animals in Australia. Revue scientifique et technique de l'Office International des Epizooties 15: 659–674.CrossRefGoogle ScholarPubMed
Eaton, W. D., Hulett, J. L., Brunson, R., and True, K. 1991. The first isolation in North America of infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) in coho salmon from the same watershed. Journal of Aquatic Animal Health 3: 114–117.2.3.CO;2>CrossRefGoogle Scholar
Faisal, M. and Garling, D. 2004. What is Whirling Disease? Fact Sheet Series No. 113. East Lansing, MI: North Central Regional Aquaculture.Google Scholar
Faisal, M. and Hnath, J. G. 2005. Fish health and diseases issues in the Laurentian Great Lakes. In Health and Diseases of Aquatic Organisms: Bilateral Perspectives, eds. Cipriano, R. C., Shchelkunov, I. S., and Faisal, M.. East Lansing, MI: Michigan State University Press, pp. 331–350.Google Scholar
FAO (Food and Agriculture Organization). (2005). Yearbook of Fishery Statistics. Rome: Food and Agriculture Organization of the United Nations.
Ford, S. E., Schotthoefer, A., and Spruck, C. 1999. In vivo dynamics of the microparasite Perkinsus marinus during progression and regression of infections in eastern oysters. Journal of Parasitology 85: 273–282.CrossRefGoogle ScholarPubMed
Fryer, J. L. and Sanders, J. E. 1981. Bacterial kidney disease of salmonid fish. Annual Review of Microbiology 35: 273–298.CrossRefGoogle ScholarPubMed
Gaughan, D. J. 2002. Disease-translocation across geographic boundaries must be recognized as a risk even in the absence of disease identification: the case with Australian Sardinops. Reviews in Fish Biology and Fisheries 11: 113–123.CrossRefGoogle Scholar
Ghittino, C., Ghittino, P., and Marin de Mateo, M. 1989. Adjournment on anguillicolosis, a common parasitic aerocystitis of eel. Rivista italiana di acquacoltura (Verona) 24: 125–136.Google Scholar
Goodwin, A. E. 2002. First report of spring viremia of carp virus (SVCV) in North America. Journal of Aquatic Animal Health 14: 161–164.2.0.CO;2>CrossRefGoogle Scholar
Gustafson, L. L., Ellis, S. K., and Bartlett, C. A. 2005. Using expert opinion to identify risk factors important to infectious salmon-anemia (ISA) outbreaks on salmon farms in Maine, USA and New Brunswick, Canada. Preventative Veterinary Medicine 70: 17–28.CrossRefGoogle ScholarPubMed
Haenen, O. 1995. Anguillicola crassus (Nematoda, Dracunculoidea) infections of European eel (Anguilla anguilla) in the Netherlands: epidemiology, pathogenesis and pathobiology. Ph.D. thesis. University of Wageningen, Netherlands.
Harvell, C. D., Kim, K., Burkholder, J. M., et al. 1999. Emerging marine diseases: climate links and anthropogenic factors. Science 285: 1505–1510.CrossRefGoogle ScholarPubMed
Hasson, K. W., Lightner, D. V., Poulos, B. T., et al. 1995. Taura syndrome in Penaeus vannamei: demonstration of a viral etiology. Diseases of Aquatic Organisms 23: 115–126.CrossRefGoogle Scholar
Hedrick, R. P. 1996. Movements of pathogens with the international trade of live fish: problems and solutions. Revue scientifique et technique de l'Office International des Epizooties 15: 523–532.CrossRefGoogle ScholarPubMed
Hedrick, P. 1997. How microbial diseases of salmonids impact aquaculture. Microbiology Australia 18: 26–30.Google Scholar
Heide-Jorgensen, M. P. and Harkonen, T. 1992. Epizootiology of the seal disease in the eastern North Sea. Journal of Applied Ecology 29: 99–107.CrossRefGoogle Scholar
Hill, B. J. 1996. National legislation in Great Britain for the control of fish diseases. Revue scientifique et technique de l'Office International des Epizooties 15: 633–645.CrossRefGoogle ScholarPubMed
Hindar, K., Ryman, N., and Utter, F. 1991. Genetic effects of cultured fish on natural fish populations. Canadian Journal of Fisheries and Aquatic Sciences 48: 945–957.CrossRefGoogle Scholar
Hnath, J. G. 1993. Great Lakes Fish Disease Control Policy and Model Program, Special Publication No. 93-1. Ann Arbor, MI: Great Lakes Fishery Commission.Google Scholar
Hoffman, G. L. 1970. Intercontinental and transcontinental dissemination and transfaunation of fish parasites with emphasis on whirling disease Myxobolus cerebralis. In A Symposium on Diseases of Fish and Shellfish Special Publication No. 5, ed. Snieszko, S. F.. Washington, DC: American Fisheries Society, pp. 69–81.Google Scholar
Hoffman, G. L. 1990. Myxobolus cerebralis, a worldwide cause of salmonid whirling disease. Journal of Aquatic Animal Health 2: 30–37.2.3.CO;2>CrossRefGoogle Scholar
Hoole, D., Bucke, D., Burgess, P., and Wellby, I. 2001. Diseases of Carp and other Cyprinid Fish. Oxford, UK: Fishing News Books.CrossRefGoogle Scholar
Humphrey, J. D. 1995. Australian Quarantine Policies and Practices for Aquatic Animals and Their Products: A Review for the Scientific Working Party on Aquatic Animal Quarantine. Canberra, ACT: Bureau of Resource Sciences.Google Scholar
ICES (International Council for the Exploration of the Seas). 1998. Code of Practice on the Introduction and Transfer of Marine Organisms. Copenhagen: International Council for the Exploration of the Sea.
Johnsen, B. O. and Jensen, A. J. 1986. Infestations of Atlantic salmon (Salmo salar), by Gyrodactylus salaris in Norwegian rivers. Journal of Fish Biology 29: 233–241.CrossRefGoogle Scholar
Johnsen, B. O. and Jensen, A. J. 1994. The spread of furunculosis in salmonids in Norwegian rivers. Journal of Fish Biology 45: 47–55.CrossRefGoogle Scholar
Jones, J. B, Hyatt, A. D., Hine, P. M., et al. 1997. Special topic review: Australasian pilchard mortalities. World Journal of Microbiology and Biotechnology 3: 383–392.CrossRefGoogle Scholar
Kim, K. and Harvell, C. D. 2004. The rise and fall of a six year coral–fungal epizootic. American Naturalist 164: S52–S63.CrossRefGoogle ScholarPubMed
Kreuder, C., Miller, M. A., Jessup, D. A., et al. 2003. Patterns of mortality in southern sea otters (Enhydra lutris nereis) from 1998–2001. Journal of Wildlife Diseases 39: 495–509.CrossRefGoogle ScholarPubMed
Lafferty, K. D. and Kuris, A. M. 1993. Mass mortality of Abalone Haliotis cracherodii on the California Channel Islands: tests of epidemiologic hypotheses. Marine Ecology Progress Series 96: 239–248.CrossRefGoogle Scholar
Langdon, J. S., Humphrey, J. D., Copland, J., et al. 1986. The disease status of Australian salmonids: viruses and viral diseases. Journal of Fish Diseases 9: 129–135.CrossRefGoogle Scholar
Lehane, I. 1993. Risks of fish imports: the 1993 aquatic animal quarantine review. Australian Veterinary Journal 70: 202–204.CrossRefGoogle ScholarPubMed
Lightner, D. V. 1996. Epizootiology, distribution and the impact on international trade of two penaeid shrimp viruses in the Americas. Revue scientifique et technique de l'Office International des Epizooties 15: 579–601.CrossRefGoogle ScholarPubMed
Lightner, D. V., Bell, T. A., Redman, R. M., et al. 1992a. A review of some major diseases of economic significance in penaeid prawns/shrimps of the Americas and Indo-Pacific. In Diseases in Asian Aquaculture, vol. 1, eds. Shariff, M., Subasinghe, R., and Arthur, J. R.. Manila: Fish Health Section, Asian Fisheries Society, pp. 57–80.Google Scholar
Lightner, D. V., Poulos, B. T., Bruce, L., et al. 1992b. New developments in penaeid virology: application of biotechnology in research and disease diagnosis for shrimp viruses of concern in the Americas. In Diseases of Cultured Penaeid Shrimp in Asia and the United States, eds. Fulks, W. and Main, K.. Makapuu Point, Honolulu, HI: Oceanic Institute, pp. 233–263.Google Scholar
Lightner, D. V., Redman, R. M., Hasson, K. W., and Pantorja, C. R. 1995. Taura syndrome in Penaeus vannamei (Crustacea: Decapoda): gross signs, histopathology and ultrastructure. Diseases of Aquatic Organisms 21: 53–59.CrossRefGoogle Scholar
Lightner, D. V., Redman, R. M., Poulos, B. T., et al. 1997. Risk of spread of penaeid shrimp viruses in the Americas by the international movement of live and frozen shrimp. Revue scientifique et technique de l'Office International des Epizooties 16: 146–160.CrossRefGoogle ScholarPubMed
Lilley, J. H., Phillips, M. J., and Tonguthai, K. 1992. A Review of Epizootic Ulcerative Syndrome (EUS) in Asia. Bangkok: Aquatic Animal Health Research Institute.Google Scholar
Littler, D. S. and Littler, M. M. 1995. Impact of CLOD pathogen on Pacific coral reefs. Science 267: 1356–1360.CrossRefGoogle ScholarPubMed
Liu, H., Gao, L., Shi, X., et al. 2004. Isolation of spring viremia of carp virus (SVCV) from cultured koi (Cyprinus carpio koi) in P.R. China. Bulletin of the European Association of Fish Pathologists 24: 194–202.Google Scholar
Marnell, L. F. 1986. Impacts of hatchery stocks on wild fish populations. In Fish Culture in Fisheries Management, ed. Stroud, R. H.. Bethesda, MD: American Fisheries Society, pp. 339–347.Google Scholar
McCallum, H., Harvell, D., and Dobson, A. 2003. Rates of spread of marine pathogens. Ecology Letters 6: 1062–1067.CrossRefGoogle Scholar
McClure, C. A., Hammell, K. L., Stryhn, H., Dohoo, I. R., and Hawkins, L. J. 2005. Application of surveillance data in evaluation of diagnostic tests for infectious salmon anemia. Diseases of Aquatic Organisms 63: 119–127.CrossRefGoogle ScholarPubMed
Meyers, T. R., Sullivan, J., Emmeneger, E., et al. 1992. Identification of viral hemorrhagic septicemia virus isolated from Pacific cod Gadus macrocephalus in Prince William Sound, Alaska, USA. Diseases of Aquatic Organisms 12: 167–175.CrossRefGoogle Scholar
Meyers, T. R., Short, S., Lipson, K., et al. 1994. Association of viral hemorrhagic septicemia virus with epizootic hemorrhages of the skin in Pacific herring Clupea harengus from Prince William Sound and Kodiak, Alaska, USA. Diseases of Aquatic Organisms 19: 27–31.CrossRefGoogle Scholar
Mitchell, H. and Stoskopf, M. K. 1999. Guidelines for development and application of aquatic animal health regulations and control programs. Journal of the American Veterinary Medical Association 14: 1786–1789.Google Scholar
Mitchum, D. L., Sherman, L. E., and Baxter, G. T. 1979. Bacterial kidney disease in feral populations of brook trout (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Salmo gairdneri). Journal of the Fisheries Research Board of Canada 36: 1370–1376.CrossRefGoogle Scholar
Moffitt, C. M. 2005. Environmental, economic and social aspects of animal protein production and the opportunities for aquaculture. Fisheries 30: 36–38.Google Scholar
Molnar, K., Szekely, C., and Baska, F. 1991. Mass mortality of eel in Lake Balaton due to Anguillicola crassus infections. Bulletin of the European Association of Fish Pathologists 11: 211–212.Google Scholar
Moore, D. W. 1991. A virus attacks shrimp: IHHN shrimp virus – its introduction into Mexico and the Sea of Cortez. CEDO News 3(2): 7–13.Google Scholar
Moore, D. W. and Brand, C. W. 1993. The culture of marine shrimp in controlled environment superintensive systems. In CRC Handbook of Mariculture, 2nd edn, vol. 1, Crustacean Aquaculture, ed. McVey, J. P.. Boca Raton, FL: CRC Press, pp. 315–348.Google Scholar
Moyer, M., Blake, N. J., and Arnold, W. S. 1993. An ascetosporan disease causing mass mortalities in the Atlantic calico scallop, Argopecten gibbus (Linnaeus 1758). Journal of Shellfish Research 12: 305–310.Google Scholar
Murray, A. G. 2002. Making the case for zoning. Australian Veterinary Journal 80: 458.Google ScholarPubMed
Murray, A. G. and Peeler, E. J. 2005. A framework for understanding the potential for emerging diseases in aquaculture. Preventative Veterinary Medicine 67: 223–235.CrossRefGoogle ScholarPubMed
Naylor, R. L., Goldburg, R. J., Primavera, J. H., et al. 2000. Effect of aquaculture on world fish supplies. Nature 405: 1017–1024.CrossRefGoogle ScholarPubMed
Nilsen, R., Ness, A., and Nylund, A. 1995. Observations on an intranuclear microsporidian in lymphoblasts from farmed Atlantic halibut larvae (Hyppoglossus hippoglossus L.). Journal of Eukaryotic Microbiology 42: 131–135.CrossRefGoogle Scholar
OIE (Office International des Epizooties). 2003. Manual of Diagnostic Tests for Aquatic Animals 4th edn. Paris: Office International des Epizooties.
OIE. 2006. Aquatic Animal Health Code. 6th edn. Paris: Office International des Epizooties.
Pantoja-Morales, C. R. and Lightner, D. V. 1991. Status of the presence of IHHN virus in wild penaeid shrimp from the coast of Sonora, Mexico. In Abstracts of the 24th Annual Meeting of the Society for Invertebrate Pathology, August 4–9, Flagstaff, AZ.Google Scholar
Primavera, J. H. 2005. Global voices of science: mangroves, fishponds, and the quest for sustainability. Science 310: 57–59.CrossRefGoogle ScholarPubMed
Rahe, R. 1987. Geschichte und derzeitiger Stand der Krebspest in der Türkei. Fischerei und Teichwirt 6: 174–177.Google Scholar
Rahimian, H. and Thulin, J. 1996. Epizootiology of Ichthyophonus hoferi in herring population off the Swedish west coast. Diseases of Aquatic Organisms 27: 187–195.CrossRefGoogle Scholar
Renault, T. 1996. Appearance and spread of diseases among bivalve molluscs in the northern hemisphere in relation to international trade. Revue scientifique et technique de l'Office International des Epizooties 15: 551–562.CrossRefGoogle ScholarPubMed
Rosenberg, E. and Loya, Y. 2004. Coral Health and Disease, New York: Springer-Verlag.CrossRefGoogle Scholar
Sano, T. 1973. Studies on viral diseases of Japanese fishes. V. Infectious pancreatic necrosis of amago trout. Bulletin of the Japanese Society of Scientific Fisheries 39: 477–480.CrossRefGoogle Scholar
Sattuar, O. 1988. Parasites prey on wild salmon in Norway. New Scientist 120: 21.Google Scholar
Schlotfeldt, H. J. 1996. Synopsis of freshwater aquaculture legislation in Germany since national reunification. Revue scientifique et technique de l'Office International des Epizooties 15: 687–702.CrossRefGoogle ScholarPubMed
Scudamore, J. 2002. Partnership, Priorities and Professionalism: A Proposed Strategy for Enhancing Veterinary Surveillance in the UK. London: Veterinary Surveillance Division, Department for Environment Food and Rural Affairs.Google Scholar
Stephenson, M. F., McGladdery, S. E., Maillet, M., Veniot, A., and Meyer, G. 2003. First reported occurrence of MSX in Canada. Journal of Shellfish Research 22: 355.Google Scholar
Subasinghe, R. P. 2005. Epidemiological approach to aquatic animal health management: opportunities and challenges for developing countries to increase aquatic production through aquaculture. Preventative Veterinary Medicine 67: 117–124.CrossRefGoogle ScholarPubMed
Subasinghe, R. P., McGladdery, S. E., and Hill, B. J. 2004. Surveillance and Zoning for Aquatic Animal Diseases, FAO Fisheries Technical Paper No. 451. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
Sussman, M., Loya, Y., Fine, M., and Rosenberg, E. 2003. The marine fireworm Hermodice carunculata is a winter reservoir and spring–summer vector for the coral bleaching pathogen Vibrio shiloi. Environmental Microbiology 5: 250–255.CrossRefGoogle ScholarPubMed
Tonguthai, K. A. 1985. Preliminary account of ulcerative fish diseases in the Indo-Pacific region (a comprehensive study based on Thai experiences). Bangkok: Department of Fisheries, Ministry of Agriculture and Cooperation,Google Scholar
Yoder, W. G. 1972. The spread of Myxosoma cerebralis into native trout population in Michigan. Progressive Fish-Culturist 34: 103–106.CrossRefGoogle Scholar
Yoshimizu, M. 1996. Disease problems of salmonid fish in Japan caused by international trade. Revue scientifique et technique de l'Office International des Epizooties 15: 533–550.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×