Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T13:19:47.529Z Has data issue: false hasContentIssue false

4 - Metric tensor, geodesics and covariant derivative

Published online by Cambridge University Press:  05 June 2012

T. Padmanabhan
Affiliation:
Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India
Get access

Summary

Introduction

We begin our study of general relativity and curved spacetime in this chapter. Chapters 4 and 5 will develop the necessary mathematical apparatus to deal with curved spacetime. As in the case of electromagnetism, the study of gravity can be divided into two separate – but interconnected – aspects. In this chapter and the next, we will study the influence of gravity on other physical systems (like particles, photons, ideal fluids, fields, etc.) without worrying about how a given gravitational field is generated – which will be discussed in Chapter 6.

All the topics introduced in this chapter will be required in the subsequent chapters and form core material for general relativity. In particular, we will start introducing index-free vector notation more liberally in the coming chapters and familiarity with the ideas and notation developed in Section 4.6.1 will be crucial. We will use units with c = 1 unless otherwise indicated.

Metric tensor and gravity

The arguments presented in the previous chapter suggest that a weak gravitational field cannot be distinguished from a modified spacetime interval as far as mechanical phenomena are concerned. We shall now generalize this result by postulating that all aspects of gravitational fields allow a geometrical description. We thus extend the tentative conclusion of the previous chapter to include arbitrarily strong gravitational fields and all physical phenomena. This leads to Einstein's theory of gravitation, which is the most beautiful of all existing physical theories.

Type
Chapter
Information
Gravitation
Foundations and Frontiers
, pp. 136 - 188
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×