Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-27T05:13:47.296Z Has data issue: false hasContentIssue false

10 - Color vision deficiencies

from Part III - Development of and differences in color vision

Published online by Cambridge University Press:  05 April 2016

Andrew J. Elliot
Affiliation:
University of Rochester, New York
Mark D. Fairchild
Affiliation:
Rochester Institute of Technology, New York
Anna Franklin
Affiliation:
University of Sussex
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asada, K. (2013). Chromatic Vision Simulator (http://asada.tukusi.ne.jp/cvsimulator/e).Google Scholar
Baraas, R. C., Carroll, J., Gunther, K. L., Chung, M., Williams, D. R., Foster, D. H., and Neitz, M. (2007). Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color vision deficiency. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 24(5), 1438–47.CrossRefGoogle ScholarPubMed
Beauchamp, M. S., Haxby, J. V., Jennings, J. E., and DeYoe, E. A. (1999). An fMRI version of the Farnsworth–Munsell 100-hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex. Cerebral Cortex, 9(3), 257–63.CrossRefGoogle ScholarPubMed
Birch, J. (1973). Dichromatic convergence points obtained by subtractive colour matching. Vision Research, 13, 1755–65.CrossRefGoogle ScholarPubMed
Birch, J. (2001). Diagnosis of Defective Colour Vision, 2nd edn. Oxford: Butterworth Heinemann.Google Scholar
Birch, J. (2012). Worldwide prevalence of red-green color deficiency. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 29(3), 313–20.CrossRefGoogle ScholarPubMed
Bouvier, S. E., and Engel, S. A. (2006). Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cerebral Cortex, 16, 183–91.CrossRefGoogle ScholarPubMed
Bowmaker, J. K., and Dartnall, H. J. A. (1980). Visual pigments of rods and cones in a human retina. Journal of Physiology (London), 298, 501–11.CrossRefGoogle Scholar
Brettel, H., Vienot, F., and Mollon, J. D. (1997). Computerized simulation of color appearance for dichromats. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 14(10), 2647–55.CrossRefGoogle ScholarPubMed
Cavalleri, A., and Gobba, F. (1998). Reversible color vision loss in occupational exposure to metallic mercury. Environmental Research, 77(2), 173–7.CrossRefGoogle ScholarPubMed
Civil Aviation Authority (2014). Colour vision guidance (www.caa.co.uk).Google Scholar
Cole, B. L. (1972). The handicap of abnormal colour vision. Australian Journal of Optometry, 55, 304–10.CrossRefGoogle Scholar
Cole, B. L. (2002). Protan colour vision deficiency and road accidents. Clinical and Experimental Optometry, 85(4), 246–53.CrossRefGoogle ScholarPubMed
Cole, B. L., Henry, G. H., and Nathan, J. (1966). Phenotypical variations of tritanopia. Vision Research, 6, 301–13.CrossRefGoogle Scholar
Costa, T. L., Barboni, M. T. S., Moura, A., Bonci, D. M. O., Gualtieri, M., Silveira, L. C., and Ventura, D. F. (2012). Long-term occupational exposure to organic solvents affects color vision, contrast sensitivity and visual fields. PLoS ONE, 7(8), e42961.CrossRefGoogle ScholarPubMed
Cumberland, P., Rahi, J. S., and Peckham, C. S. (2005). Impact of congenital colour vision defects on occupation. Archives of Disease in Childhood, 90, 906–8.CrossRefGoogle ScholarPubMed
Dain, S. J. (2003). Evaluation of “Colour Vision Testing Made Easy”. In Mollon, J. D., Pokorny, J., and Knoblauch, K. (eds.), Normal and Defective Colour Vision (pp. 340–6). Oxford University Press.Google Scholar
Dain, S. J. (2004). Clinical colour vision tests. Clinical and Experimental Optometry, 87(4–5), 276–93.CrossRefGoogle ScholarPubMed
Dalton, J. (1798). Extraordinary facts relating to the vision of colours: with observations. Memoirs of the Manchester Literary and Philosophical Society, 5, 2845.Google Scholar
Deeb, S. S. (2005). The molecular basis of variation in human color vision. Clinical Genetics 67, 369–77.CrossRefGoogle ScholarPubMed
Deeb, S. S. (2006). Genetics of variation in human color vision and the retinal cone mosaic. Current Opinion in Genetics & Development, 16, 301–7.CrossRefGoogle ScholarPubMed
Farnsworth, D. (1943). The Farnsworth–Munsell 100-hue and dichotomous tests for color vision. Journal of the Optical Society of America, 33(10), 568–78.CrossRefGoogle Scholar
Feitosa-Santana, C., Barboni, M. T., Oiwa, N. N., Paramei, G. V., Simões, A. L., Da Costa, M. F., Silveira, L. C., et al. (2008). Irreversible color vision losses in patients with chronic mercury vapor intoxication. Visual Neuroscience, 25(3), 487–91.CrossRefGoogle ScholarPubMed
Fraunfelder, F. T., and Fraunfelder, F. W. (2001). Drug-Induced Ocular Side Effects, 5th edn. Boston, MA: Butterworth-Heinemann.Google Scholar
Health and Safety Executive (2005a). Colour Vision Examination: A Guide for Employers (www.hse.gov.uk/pubns/web03.pdf).Google Scholar
Health and Safety Executive (2005b). Guidance note MS7; Colour Vision Examination: A Guide for Occupational Health Providers (www.hse.gov.uk/pubns/ms7.pdf).Google Scholar
Henderson, A. (2005). Screening for colour vision defects is important (response to Cumberland et al.). Archives of Disease in Childhood, 90, 906–8.Google Scholar
Hofer, H., Carroll, J., Neitz, J., Neitz, M., and Williams, D. R. (2005). Organization of the human trichromatic cone mosaic. Journal of Neuroscience, 25(42), 9669–79.CrossRefGoogle ScholarPubMed
Hunt, D. M., Dulai, K., Bowmaker, J. K., and Mollon, J. D. (1995). The chemistry of John Dalton’s color blindness. Science, 267, 984–8.CrossRefGoogle ScholarPubMed
Iregren, A., Andersson, M., and Nylen, P. (2001). Color vision and occupational chemical exposures. I. An overview of tests and effects. NeuroToxicology, 23, 719–33.Google Scholar
Jordan, G., Deeb, S. S., Bosten, J. M., and Mollon, J. D. (2010). The dimensionality of color vision in carriers of anomalous trichromacy. Journal of Vision, 10(8:12), 119.CrossRefGoogle ScholarPubMed
Judd, D. B. (1943). Facts of colorblindness. Journal of the Optical Society of America, 33(6), 294307.CrossRefGoogle Scholar
Knight, R., and Buck, S. L. (2001). Rod influences on hue perception: effect of background light level. Color Research & Application, 26, S60–4.3.0.CO;2-G>CrossRefGoogle Scholar
Köllner, H. (1912). Die Störungen des Farbensinnes: Ihre klinische Bedeutung und ihre Diagnose. Berlin: Karger.Google Scholar
Kurtenbach, A., Schiefer, U., Neu, A., and Zrenner, E. (1999). Preretinopic changes in the colour vision of juvenile diabetics. British Journal of Ophthalmology, 83, 43–6.CrossRefGoogle ScholarPubMed
Lee, B. B., Martin, P. R., and Valberg, A. (1988). The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. Journal of Physiology (London), 404, 323–47.CrossRefGoogle ScholarPubMed
Lerman, S. (1980). Radiant Energy and the Eye. New York: Macmillan.Google Scholar
MacAdam, D. L. (1942). Visual sensitivities to color difference in daylight. Journal of the Optical Society of America, 32, 247–74.CrossRefGoogle Scholar
Mancuso, K., Hauswirth, W. W., Li, Q., Connor, T. B., Kuchenbecker, J. A., Mauck, M. C., Neitz, J., et al. (2009). Gene therapy for red-green colourblindness in adult primates. Nature, 461, 784–7.CrossRefGoogle ScholarPubMed
Mäntyjärvi, M., and Tuppurainen, K. (1992). Color vision in Stargardt’s disease. International Ophthalmology, 16(6), 423–8.CrossRefGoogle ScholarPubMed
Marmor, M. F., and Ravin, J. G. (2009). The Artist’s Eyes: Vision and the History of Art New York: Abrams.Google Scholar
Marré, M. (1973). The investigation of acquired colour deficiencies. In Judd, D. B. (ed.), Colour 73 (pp. 99135). London: Wiley.Google Scholar
McKeefry, D. J., Burton, M., Vakrou, C., Barrett, B. T., and Morland, A. B. (2008). Induced deficits in speed perception by transcranial magnetic stimulation of human cortical areas V5/MT+ and V3A. Journal of Neuroscience, 28(27), 6848–57.CrossRefGoogle ScholarPubMed
McKeefry, D. J., and Zeki, S. (1997). The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain, 120, 2229–42.CrossRefGoogle ScholarPubMed
Michaelides, M., Hardcastle, A. J., Hunt, D. M., and Moore, A. T. (2006). Progressive cone and cone–rod dystrophies: phenotypes and underlying molecular genetic basis. Survey of Ophthalmology, 51(3), 232–58.CrossRefGoogle ScholarPubMed
Mollon, J. D. (1989). “Tho’ she kneel’d in that place where they grew…” The uses and origins of primate color vision. Journal of Experimental Biology, 146, 2138.CrossRefGoogle Scholar
Mollon, J. D., Astell, S., and Reffin, J. P. (1991). A minimalist test of colour vision. In Drum, B., Moreland, J. D., and Serra, A. (eds.), Colour Vision Deficiencies X (pp. 5968). Dordrecht: Kluwer.CrossRefGoogle Scholar
Mollon, J. D., and Cavonius, L. R. (2012). The Lagerlunda collision and the introduction of color vision testing. Survey of Ophthalmology, 57(2), 178–94.CrossRefGoogle ScholarPubMed
Mollon, J. D., Dulai, K. S., and Hunt, D. M. (1997). Dalton’s colour blindness: an essay in molecular biography. In Dickinson, C. M., Murray, I. J., and Carden, D. (eds.), John Dalton’s Colour Vision Legacy (pp. 1533). London: Taylor and Francis.Google Scholar
Munsell, A. H. (1912). A pigment color system and notation. American Journal of Psychology, 23(2), 236–44.Google Scholar
Murphey, D. K., Yoshor, D., and Beauchamp, M. S. (2008). Perception matches selectivity in the human anterior color center. Current Biology, 18, 216–20.CrossRefGoogle ScholarPubMed
Nathans, J., Davenport, C. M., Maumenee, I. H., Lewis, R. A., Hejmancik, J. F., Litt, M., Lovrien, E., et al. (1989). Molecular genetics of human blue-cone monochromacy. Science, 245, 831–8.CrossRefGoogle ScholarPubMed
Nathans, J., Thomas, D., and Hogness, D. S. (1986). Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science, 232, 193202.CrossRefGoogle ScholarPubMed
Neitz, M., Kraft, T. W., and Neitz, J. (1998). Expression of L cone pigment gene subtypes in females. Vision Research, 38, 3221–5.CrossRefGoogle ScholarPubMed
Neitz, M., Mancuso, K., and Neitz, J. (2011). Color vision defects. In Encyclopedia of Life Sciences. Chichester: Wiley.Google Scholar
Neitz, M., and Neitz, J. (1995). Numbers and ratios of visual pigment genes for normal red-green color vision. Science, 267, 1013–16.CrossRefGoogle ScholarPubMed
Neitz, M., and Neitz, J. (2000). Moleular genetics of color vision and color vision defects. Archives of Ophthalmology, 118, 691700.CrossRefGoogle Scholar
Neitz, M., and Neitz, J. (2001). A new mass screening test for color vision deficiencies in children. Color Research & Application, 26, S239–49.3.0.CO;2-L>CrossRefGoogle Scholar
Paramei, G. V., Meyer-Baron, M., and Seeber, A. (2004). Impairments of colour vision induced by organic solvents: a meta-analysis study. NeuroToxicology, 25, 803–16.CrossRefGoogle ScholarPubMed
Pokorny, J., Collins, W., Howett, G., Lakowski, R., Lewis, M., Moreland, J. D., Paulson, H., et al. (1981). Procedures for Testing Color Vision: Report of Working Group 41. Washington, DC: National Academy Press.Google Scholar
Rabin, J., Gooch, J., and Ivan, D. (2011). Rapid quantification of color vision: the cone contrast test. Investigative Ophthalmology and Vision Science, 52, 816–20.Google ScholarPubMed
Rail Safety and Standards Board (2007). Good Practice Guide on Colour Vision Requirements for Rail Workers. London: RSSB.Google Scholar
Rietbrock, N., Alken, R. G., and Verriest, G. (1983). Color vision deficiencies: a common sign of intoxication in chronically digoxin-treated patients. In Verriest, G. (ed.), Colour Vision Deficiencies V (pp. 5965). Bristol: Adam Hilger.Google Scholar
Rigden, C. (1999). ‘The eye of the beholder’ – designing for colour-blind users. British Telecommunications Engineering, 17.Google Scholar
Royal College of Ophthalmologists (2009). Hydroxychloroquine and Ocular Toxicity. Recommendations on Screening. London: Royal College of Ophthalmologists.Google Scholar
Rushton, W. A. H. (1972). Pigments and signals in colour vision. Journal of Physiology (London), 220(3), 131.CrossRefGoogle ScholarPubMed
Sharpe, L. T., Stockman, A., Jaegle, H., and Nathans, J. (1999). Opsin genes, cone photopigments, color vision, and color blindness. In Gegenfurtner, K. R. and Sharpe, L. T. (eds.), Color Vision: From Genes to Perception (pp. 352). Cambridge University Press.Google Scholar
Turkish Ministry of Education (2006). (http://mevzuat.meb.gov.tr/html/26301_0.html).Google Scholar
Van Beveren, T. (2014). We are colorblind (http://wearecolorblind.com/).Google Scholar
Verriest, G., Neubauer, O., Marré, M., and Uvijls, A. (1980). New investigations concerning the relationships between congenital colour vision defects and road traffic security. International Ophthalmology, 2, 8799.CrossRefGoogle Scholar
Walsh, V., Carden, D., Butler, S. R., and Kulikowski, J. J. (1993). The effects of V4 lesions on the visual abilities of macaques: hue discrimination and colour constancy. Behavioural Brain Research, 53, 5162.CrossRefGoogle ScholarPubMed
Werner, J. S. (1996). Visual problems of the retina during ageing: compensation mechanisms and colour constancy across the life span. Progress in Retinal and Eye Research, 15(2), 621–45.CrossRefGoogle Scholar
Wild, H. M., Butler, S. R., Carden, D., and Kulikowski, J. J. (1985). Primate cortical area V4 important for colour constancy but not wavelength discrimination. Nature, 313, 133–5.CrossRefGoogle Scholar
Zeki, S. (1980). The representation of colours in the cerebral cortex. Nature, 284, 412–18.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×