Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T01:07:49.688Z Has data issue: false hasContentIssue false

12 - Gastrointestinal System

from Systemic Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abell, T. L. & Malagelada, J. R. (1985). Glucagon-evoked gastridysrhythmias in humans shown by an improved electrogastrographic technique. Gastroenterology, 88: 19321940.Google Scholar
Abell, T. L., Malagelada, J. R., Lucas, A. R., Brown, M. L., Camilleri, M., Go, V. L., … & Zinsmeister, A. R. (1987). Gastric electromechanical and neurohormonal function in anorexia nervosa. Gastroenterology, 93: 958965.Google Scholar
Abell, T. L., Tucker, R., & Malagelada, J. R. (1985). Simultaneous gastric electromanometry in man. In Stern, R. M. & Koch, K. L. (eds.), Electrogastrography (pp. 7888). New York: Praeger.Google Scholar
Alvarez, W. C. (1922). The electrogastrogram and what it shows. Journal of the American Medical Association, 78, 11161119.Google Scholar
Alvarez, W. C. (1943). Nervousness, Indigestion, and Pain. New York: Hoeber.Google Scholar
Baldaro, B., Mazzetti, M., Codispoti, M., Tuozzi, G., Bolzani, R., & Trombini, G. (2001). Autonomic reactivity during viewing of an unpleasant film. Perceptual and Motor Skills, 93: 797805.Google Scholar
Beaumont, W. (1959 [1833]). Experiments and Observations on the Gastric Juice and the Physiology of Indigestion. New York: Dover.Google Scholar
Benson, P. W., Hooker, J. B., Koch, K. L., & Weinberg, R. B. (2012). Bitter taster status predicts susceptibility to vection-induced motion sickness and nausea. Neurogastroenterology and Motility, 24: 134140.Google Scholar
Berntson, G. G., Cacioppo, J. T., Binkley, P. F., Uchino, B. N., Quigley, K. S., & Fieldstone, A. (1994). Autonomic cardiac control: III. Psychological stress and cardiac response in autonomic space as revealed by pharmacological blockades. Psychophysiology, 31: 599608.Google Scholar
Berntson, G. G., Quigley, K. S., & Lozano, D. (2007). Cardiovascular psychophysiology. In Caccioppo, J. T., Tassinary, L. G., & Berntson, G. G. (eds.), Handbook of Psychophysiology, 3rd edn. (pp. 182210). Cambridge University Press.Google Scholar
Bortolotti, M., Sarti, P., Barara, L., & Brunelli, F. (1990). Gastric myoelectrical activity in patients with chronic idiopathic gastroparesis. Journal of Gastrointestinal Motility, 2: 104108.Google Scholar
Brehmer, A. (2006). Structure of enteric neurons. Advances in Anatomy, Embryology, and Cell Biology, 186: 191.Google Scholar
Brown, B. H., Smallwood, R. H., Duthie, H. L., & Stoddard, C. J. (1975). Intestinal smooth muscle electrical potentials recorded from surfaces electrodes. Medical Biological Engineering, 13: 97103.Google Scholar
Bruley des Varannes, S., Mizrahi, M., & Dubois, A. (1991). Relation between postprandial gastric emptying and cutaneous electrogastrogram in primates. American Journal of Physiology, 261: G248G255.Google Scholar
Bruno, C., Lopetuso, L. R., Ianiro, G., Laterza, L., Gerardi, V., Petito, V., … & Scaldaferri, F., (2013). 13C-octanoic acid breath test to study gastric emptying time. European Review for Medical and Pharmacological Sciences, 17: 5964.Google Scholar
Brzana, R. J., Koch, K. L., & Bingaman, S. (1998). Gastric myoelectrical activity in patients with gastric outlet obstruction and idiopathic gastroparesis. American Journal of Gastroenterology, 93: 18031809.Google Scholar
Camilleri, M., Malagelada, J. R., Brown, M. L., Becker, G., & Zinsmeister, A. R. (1985). Relation between antral motility and gastric emptying of solids and liquids in humans. American Journal of Physiology, 249: G580G585.Google Scholar
Cannon, W. B. (1936). Digestion and Health. New York: Norton.Google Scholar
Cannon, W. B. & Washburn, A. L. (1912). An explanation of hunger. American Journal of Physiology, 29: 441454.Google Scholar
Carabotti, M., Scirocco, A., Maselli, M. A., & Severi, C. (2015). The gut–brain axis: interactions between enteric microbiota, central, and enteric nervous systems. Annals of Gastroenterology, 28: 203209.Google Scholar
Carlson, A. J. (1916). The Control of Hunger in Health and Disease. University of Chicago Press.Google Scholar
Chen, J. D. Z., Davenport, K., & McCallum, R. W. (1993a). Effects of fat preload on gastric myoelectrical activity in normal humans. Journal of Gastrointestinal Motility, 5: 281287.Google Scholar
Chen, J. D. Z., Lin, Z. Y., Parolisi, S., & McCallum, R. W. (1995). Inhibitory effects of cholecystokinin on postprandial gastric myoelectric activity. Digestive Diseases and Sciences, 40: 26142622.Google Scholar
Chen, J. D. Z. & McCallum, R. W. (1991). Electrogastrogram: measurement, analysis and prospective applications. Medical and Biological Engineering and Computing, 29: 339350.Google Scholar
Chen, J. D. Z., Pan, J., & Orr, W. C. (1996). Role of sham feeding in postprandial changes of gastric myoelectrical activity. Digestive Diseases and Sciences, 41: 17061712.Google Scholar
Chen, J. D. Z., Richards, R., & McCallum, R. W. (1993b). Frequency components of the electrogastrogram and their correlations with gastrointestinal motility. Medical and Biological Engineering and Computing, 31: 6067.Google Scholar
Chen, J. D. Z., Stewart, W. R., & McCallum, R. W. (1993c). Adaptive spectral analysis of episodic rhythmic variations in gastric myoelectric potentials. IEEE Transactions on Biomedical Engineering, 40: 128135.Google Scholar
Chen, J. D. Z., Vandewalle, J., Sansen, W., Vantrappen, G., & Janssens, J. (1990). Adaptive spectral analysis of cutaneous electrical signals using autoregressive moving average modeling. Medical and Biological Engineering and Computing, 28: 531536.Google Scholar
Chen, J. D. Z., Zou, X., Lin, X., Ouyang, S., & Liang, J. (1999). Detection of slow wave propagation from the cutaneous electrogastrogram. American Journal of Physiology, 277: G424G430.Google Scholar
Cheng, L. K., Du, P., & O’Grady, G. (2013). Mapping and modeling gastrointestinal bioelectricity: from engineering bench to bedside. Physiology, 28: 310317.Google Scholar
Chiloiro, M., Riezzo, G., Guerra, V., Reddy, S. N., & Girgio, I. (1994). The cutaneous electrogastrogram reflects postprandial gastric emptying in humans. In Chen, J. D. Z. & McCallum, R. W. (eds.), Electrogastrography: Principles and Applications (pp. 293306). New York: Raven Press.Google Scholar
Code, C. F. & Marlett, J. A. (1975). The interdigestive myo-electric complex of the stomach and small bowel of dogs. Journal of Physiology, 246: 289309.Google Scholar
Coelho-Aguiar, J. M., Bon-Frauches, A. C., Gomes, A. L. T., Verissimo, C. P., Aguiar, D. P., Matias, D., … & Moura-Neta, V. (2015). The enteric glia: identity and functions. Glia, 63: 921935.Google Scholar
Couturier, D., Roze, C., Paologgi, J., & Debray, C. (1972). Electrical activity of the normal human stomach: a comparative study of recordings obtained from serosal and mucosal sites. Digestive Diseases and Sciences, 17: 969976.Google Scholar
Davis, R. C., Garafolo, L., & Gault, F. P. (1957). An exploration of abdominal potentials. Journal of Comparative and Physiological Psychology, 50: 519523.Google Scholar
Davis, R. C., Garafolo, L., & Kveim, K. (1959). Conditions associated with gastrointestinal activity. Journal of Comparative and Physiological Psychology, 52: 466475.Google Scholar
Diamanti, A., Bracci, F., Gambarara, M., Ciofetta, G. C., Sabbi, T., Ponticelli, A., … & Castro, M. (2003). Gastric electric activity assessed by electrogastrography and gas emptying scintigraphy in adolescents with eating disorders. Journal of Pediatric Gastroenterology and Nutrition, 37: 3541.Google Scholar
Dickman, R., Zilper, T., Steinmetz, A., Pakanaev, L., Ron, Y., Bernstine, H., … & Shirin, H. (2013). Comparison of continuous breath test and gastric scintigraphy for the measurement of gastric emptying rate in healthy and dyspeptic individuals. European Journal of Gastroenterology and Hepatology, 25: 291295.Google Scholar
Dubois, M. & Mizrahi, M. (1994). Electrogastrography, gastric emptying, and gastric motility. In Chen, J. D. Z. & McCallum, R. W. (eds.). Electrogastrography: Principles and Applications (pp. 247256). New York: Raven Press.Google Scholar
Enck, P., Hefner, J, Herbert, B. M., Mazurak, N., Weimer, K., Muth, E. R., … & Martens, U. (2013). Sensitivity and specificity of hypnosis effects on gastric myoelectrical activity. PLoS One, 8: e83486.Google Scholar
Familoni, B. O., Bowes, K. L., Kingma, Y. J., & Cote, K. R. (1991). Can transcutaneous electrodes diagnose gastric electrical abnormalities? Gut, 32: 141146.Google Scholar
Friesen, C. A., Lin, Z., Schurman, J. V., Andre, L., & McCallum, R. W. (2007). Autonomic nervous system response to a solid meal and water loading in healthy children: its relation to gastric myoelectrical activity. Neurogastroenterology and Motility, 19: 376382.Google Scholar
Furness, J. B. & Costa, M. (1980). Types of nerves in the enteric nervous system. Neuroscience, 5: 120.Google Scholar
Gabbay, F. H. & Stern, R. M. (2012). A quiet voice: Roland Clark Davis and the emergence of psychophysiology. Psychophysiology, 49: 443453.Google Scholar
Geldof, H., van der Schee, E. J., & Grashuis, J. L. (1986a). Accuracy and reliability of electrogastrography (EGG). Gastroenterology, 90: 1425.Google Scholar
Geldof, H., van der Schee, E. J., van Blankenstein, M., & Grashuis, J. L. (1986b). Electrogastrographic study of gastric myoelectrical activity in patients with unexplained nausea and vomiting. Gut, 27: 799808.Google Scholar
Ghoos, Y. F., Maes, B. D., Geypens, B. J., Mys, G., Hiele, M. I., Rutgeerts, P. J., & Vantrappen, G. (1993). Measurement of gastric emptying rate of solids by means of a carbon-labeled octanoic acid breath test. Gastroenterology, 104: 16401647.Google Scholar
Gianaros, P. J., Quigley, K. S., Mordkoff, J. T., & Stern, R. M. (2001). Gastric myoelectrical and autonomic cardiac reactivity to laboratory stressors. Psychophysiology, 38: 642652.Google Scholar
Grover, M., Farrugia, G., Lurken, M. S., Bernard, C. E., Faussone-Pellegrini, M. S., Smyrk, T. C., … & Pasricha, P. J. (2011). Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterology, 140: 15751585.Google Scholar
Hamilton, J. W., Bellahsene, B. E., Reichelderfer, M., Webster, J. H., & Bass, P. (1986). Human electrogastrograms: comparison of surface and mucosal recordings. Digestive Diseases and Sciences, 31: 3339.Google Scholar
Harrison, N. A., Gray, M. A., Gianaros, P. J., & Critchley, H. D. (2010). The embodiment of emotional feelings in the brain. Journal of Neuroscience, 30: 1287812884.Google Scholar
Hasler, W. L. (2014). The use of SmartPill for gastric monitoring. Expert Review of Gastroenterology and Hepatology, 8: 587600.Google Scholar
Herbert, B. M., Muth, E. R., Pollatos, O., & Herbert, C. (2012). Interoception across modalities: on the relationship between cardiac awareness and the sensitivity for gastric functions. PLoS One, 7: e36646.Google Scholar
Hinder, R. A. & Kelly, K. A. (1977). Human gastric pacesetter potentials: site of origin and response to gastric transection and proximal vagotomy. American Journal of Physiology, 133: 2933.Google Scholar
Hölzl, R., Loffler, K., & Muller, G. M. (1985). On conjoint gastrography or what the surface gastrograms show. In Stern, R. M. & Koch, K. L. (eds.), Electrogastrography: Methodology, Validation, and Applications (pp. 89115). New York: Praeger.Google Scholar
Huisinga, J. D. (2001). Physiology and pathophysiology of the interstitial cells of Cajal: from bench to bedside. II: Gastric motility: lessons from mutant mice on slow waves and innervation. American Journal of Physiology, 281: G1129G1134.Google Scholar
Jednak, M. A., Shadigian, E. M., Kim, M. S., Woods, M. L., Hooper, F. G., Owyang, , & Hasler, W. L. (1999). Protein meals reduce nausea and gastric slow wave dysrhythmic activity in first trimester pregnancy. American Journal of Physiology, 277: G855861.Google Scholar
Jokerst, M. D., Gatto, M., Fazio, R., Stern, R. M., & Koch, K. L. (1999). Slow deep breathing prevents the development of tachygastria and symptoms of motion sickness. Aviation, Space, and Environmental Medicine, 70: 11891192.Google Scholar
Jones, K. R. & Jones, G. E. (1985). Pre- and postprandial EGG variation. In Stern, R. M. & Koch, K. L. (eds.), Electrogastrography: Methodology, Validation and Applications (pp. 168181). New York: Praeger.Google Scholar
Keller, J., Andresen, V., Wolter, J., Layer, P., & Camilleri, M. (2009). Influence of clinical parameters on the results of 13C-ooctanoic acid breath tests: examination of different mathematical models in a large patient cohort. Neurogastroenterology and Motility, 21: 10391047.Google Scholar
Kelly, K. A., Code, C. F., & Elveback, L. R. (1969). Patterns of canine gastric electrical activity. American Journal of Physiology, 217: 461470.Google Scholar
Kim, J., Napadow, V., Kuo, B., & Barbieri, R. (2011). A combined HRV–fMRI approach to assess cortical control of cardiovagal modulation by motion sickness. In Proceedings of the IEEE Engineering in Medicine and Biological Society, 2011, (pp. 28252828). Piscataway, NJ: IEEE.Google Scholar
Kim, T. W., Beckett, E. A., Hanna, R., Koh, S. D., Ordög, T., Ward, S. M., & Sanders, K. M. (2002). Regulation of pacemaker frequency in the murine gastric antrum. Journal of Physiology, 538: 145157.Google Scholar
Kingma, Y. J. (1989). The electrogastrogram and its analysis. Critical Reviews in Biomedical Engineering, 17: 105124.Google Scholar
Koch, K. L. (2002). Electrogastrography. In Schuster, M. M., Crowell, M. D., & Koch, K. L. (eds.), Schuster Atlas of Gastrointestinal Motility, 2nd edn. (pp. 185202). Hamilton, ON: Decker.Google Scholar
Koch, K. L. (2014) Gastric dysrhythmias: a potential objective measure of nausea. Experimental Brain Research, 232: 25532561.Google Scholar
Koch, K. L., Hong, S. P., & Xu, L. (2000). Reproducibility of gastric myoelectrical activity and the water load test in patients with dysmotility-like dyspepsia symptoms and in control subjects. Journal of Clinical Gastroenterology, 12: 125129.Google Scholar
Koch, K. L. & Stern, R. M. (1985). The relationship between the cutaneously recorded electrogastrogram and antral contractions in man. In Stern, R. M. & Koch, K. L. (eds.), Electrogastrography: Methodology, Validation, and Applications (pp. 116131). New York: Praeger.Google Scholar
Koch, K. L, & Stern, R. M. (1993). Electrogastrography. In Kumar, D. & Wingate, D. (eds.), An Illustrated Guide to Gastrointestinal Motility (pp. 290307). London: Churchill Communications Europe.Google Scholar
Koch, K. L. & Stern, R. M. (2004). Handbook of Electrogastrography. Oxford University Press.Google Scholar
Koch, K. L., Stern, R. M., Bingaman, S., & Eggli, D. (1991). Satiety, stomach volume, and gastric myoelectrical activity during solid-phase gastric emptying: a study of healthy individuals. Journal of Gastrointestinal Motility, 5: 4147.Google Scholar
Koch, K. L., Stewart, W. R., & Stern, R. M. (1987). Effects of barium meals on gastric electromechanical activity in man: a fluorscopic-electrogastrophic study. Digestive Diseases and Sciences, 32: 12171222.Google Scholar
Koch, K. L., Tran, T. N., Stern, R. M., Bingaman, S., & Sperry, N. (1993). Gastric myoelectrical activity in premature and term infants. Neurogastroenterology & Motility, 5: 4147.Google Scholar
Kokubo, T., Matsui, S., & Ishiguro, M. (2013). Meta-analysis of oro-cecal transit time in fasting subjects. Pharmaceutical Research, 30: 402411.Google Scholar
Kundu, S. & Koch, K. L. (2011). Effect of balloon distention or botulinum toxin A injection of the pylorus on symptoms and body weight in patients with gastroparesis and normal 3 cycle per minute gastric electrical activity. American Journal of Gastroenterology, 106: S35.Google Scholar
Kwong, N. K., Brown, B. H., Whittaker, G. E., & Duthie, H. L. (1970). Electrical activity of the gastric antrum in man. British Journal of Surgery, 12: 913916.Google Scholar
Lacy, B. E., Koch, K. L., & Crowell, M. D. (2002). Manometry. In Schuster, M. M., Crowell, M. D., & Koch, K. L. (eds.), Schuster Atlas of Gastrointestinal Motility, 2nd edn. (pp. 135150). Hamilton, ON: Decker.Google Scholar
Lavigne, M. E., Wiley, Z. D., Meyer, J. H., Martin, P., & MacGregor, I. L. (1978). Gastric emptying rates of solid food in relation to body size. Gastroenterology, 74: 12581260.Google Scholar
Lee, K., Chey, W., Tai, H., & Yajima, H. (1978). Radioimmunoassay of motilin: validation and studies on the relationship between plasma motilin and interdigestive myoelectric activity in the duodenum of dog. Digestive Diseases and Sciences, 23: 789795.Google Scholar
Levine, M. E., DeRusso, D. M., Tehan, J. M., & Shafer, A. L. (2010). The beneficial effects of ginger for the prevention of motion-induced nausea and gastric dysrhythmia. Psychosomatic Medicine, 72: A109.Google Scholar
Levine, M. E., Holt, L., & Koch, K. L. (2007). Effects of soy, casein, and whey protein-predominant drinks on gastric myoelectrical activity and postprandial symptoms of fullness and satiety. Neurogastroenterology & Motility, 19: 526527.Google Scholar
Levine, M. E., Muth, E. R., Williamson, M. J., & Stern, R. M. (2004). Protein-predominant meals inhibit the development of gastric tachyarrhythmia, nausea and the symptoms of motion sickness. Alimentary Pharmacology & Therapeutics, 19: 583590.Google Scholar
Levine, M. E. & Puzino, K. M. (2013). Music helps but shadowing doesn’t: the effects of emotional and cognitive distraction on motion-induced nausea and gastric dysrhythmia. Psychosomatic Medicine, 75: A87.Google Scholar
Levine, M. E. & Stern, R. M. (2015). The use of facial cooling for the management of motion-induced nausea and gastric dysrhythmia. Psychosomatic Medicine, 77: A112.Google Scholar
Levine, M. E., Stern, R. M., & Koch, K. L. (2014). Enhanced perceptions of control and predictability reduce motion-induced nausea and gastric dysrhythmia. Experimental Brain Research, 232: 26752684.Google Scholar
Lin, H. C. & Hasler, W. L. (1995). Disorders of gastric emptying. In Yamada, T. (ed.), Textbook of Gastroenterology (pp. 13181346). Philadelphia, PA: J. P. Lippincott.Google Scholar
Lin, Z. & Chen, J. D. Z. (1994). Comparison of three running spectral analysis methods. In Chen, J. D. Z. & McCallum, R. W. (eds.), Electrogastrography: Principles and Applications (pp. 7598). New York: Raven Press.Google Scholar
Lunding, J. A., Nordstrom, L. M., Haukelid, A. O., Gilja, O. H., Berstad, A., & Hausken, T. (2008). Vagal activation by sham feeding improves gastric motility in functional dyspepsia. Neurogastroenterology and Motility, 20: 618624.Google Scholar
Marie, I., Gourcerol, G., Leroi, A., Menard, J., Levesque, H., & Ducrotte, P. (2012). Delayed gastric emptying determined using the 13C-octanoic acid breath test in patients with systemic sclerosis. Arthritis and Rheumatism, 64: 23462355.Google Scholar
Mayer, E. A., Tillisch, K., & Gupta, A. (2015). Gut/brain axis and the microbiota. Journal of Clinical Investigation, 125: 926938.Google Scholar
McCallum, R. W., Snape, W., Brody, F., Wo, J., Parkman, H. P., & Nowak, T. (2010). Gastric electrical stimulation with Enterra therapy improves symptoms from diabetic gastroparesis in a prospective study. Clinical Gastroenterology and Hepatology, 8: 947954.Google Scholar
McNearney, T., Lin, X., Shrestha, J., Lisse, J., & Chen, J. D. Z. (2002). Characterization of gastric myoelectrical rhythms in patients with systemic sclerosis using multichannel surface electrogastrography. Digestive Diseases & Sciences, 47: 690698.Google Scholar
Meissner, K. (2009). Effects of placebo interventions on gastric motility and general autonomic activity. Journal of Psychosomatic Research, 66: 391398.Google Scholar
Meyer, J. H. (1987). Motility of the stomach and gastroduodenal junction. In Johnson, L. R., Christensen, J., Jacobsen, E. D., & Schultz, S. G. (eds.), Physiology of the Gastrointestinal Tract (pp. 613630). New York: Raven Press.Google Scholar
Meyer, J. H., Gu, Y., Elashoff, J., Reedy, T., Dressman, J., & Amidon, G. (1986). Effect of viscosity and flow rate on gastric emptying of solids. American Journal of Physiology, 250: G161G164.Google Scholar
Meyer, J. H., MacGregor, I. L., Gueller, R., Martin, P., & Cavalieri, R. (1976). 99Tc-tagged chicken liver as a marker of solid food in the human stomach. American Journal of Digestive Diseases, 21: 296304.Google Scholar
Meyer, J. H., Ohashi, H., Jehn, D., & Thompson, J. B. (1981). Size of liver particles emptied from the human stomach. Gastroenterology, 80: 14891496.Google Scholar
Mintchev, M. P., Otto, S. J., & Bowes, K. L. (1997). Electrogastrography can recognize gastric electrical uncoupling in dogs. Gastroenterology, 112: 20062011.Google Scholar
Mirizzi, N. & Scafoglieri, V. (1983). Optimal direction of the electrogastrographic signal in man. Medical and Biological Engineering and Computing, 21: 385389.Google Scholar
Moraes, E. R., Toncon, L. E., Baffa, O., Oba-Kunyioshi, A. S., Wakai, R., & Leuthold, A. (2003). Adaptive, autoregressive spectral estimation for analysis of electrical signals of gastric origin. Physiological Measurement, 24: 91106.Google Scholar
Morgan, K. G., Schmalz, P. F., & Szurszewski, J. H. (1978). The inhibitory effects of vasoactive intestinal polypeptide on the mechanical and electrical activity of canine antral smooth muscle. Journal of Physiology, 282: 437450.Google Scholar
Muth, E. R., Koch, K. L, & Stern, R. M. (2000). Significance of autonomic nervous system activity in functional dyspepsia. Digestive Diseases and Sciences, 45: 854863.Google Scholar
Muth, E. R., Koch, K. L., Stern, R. M., & Thayer, J. F. (1999). Effect of autonomic nervous system manipulations on gastric myoelectrical activity and emotional responses in healthy human subjects. Psychosomatic Medicine, 61: 297303.Google Scholar
Muth, E. R., Stern, R. M., & Koch, K. L. (1996). Effects of vection-induced motion sickness on gastric myoelectric activity and oral-cecal transit time. Digestive Diseases and Sciences, 41: 330334.Google Scholar
Napadow, V., Sheehan, J., Kim, J., Dassatti, A., Thurler, A. H., Surjanhata, B., … & Kuo, B. (2013a). Brain white matter microstructure is associated with susceptibility to motion-induced nausea. Neurogastroenterology and Motility, 25: 448450.Google Scholar
Napadow, V., Sheehan, J. D., Kim, J., LaCount, L. T., Park, K., Kaptchuk, T. J., … & Kuo, B. (2013b). The brain circuitry underlying the temporal evolution of nausea in humans. Cerebral Cortex, 23: 806813.Google Scholar
Nelsen, T. S. & Kohatsu, S. (1968). Clinical electrogastrography and its relationship to gastric surgery. American Journal of Surgery, 116: 215222.Google Scholar
Neunlist, M., Rolli-Derkinderen, M., Latorre, R., Van Landeghem, L., Coron, E., Derkinderen, P., & DeGiorgio, R. (2014). Enteric glial cells: recent developments and future directions. Gastroenterology, 147: 12301237.Google Scholar
Nobrega, A. C. M., Ferreira, B. R. S., Oliveira, G. J., Sales, K. M. O., Santos, A. A., Nobre E Souza, M. A., … & Souza, M. H. L. P. (2012). Dyspeptic symptoms and delayed gastric emptying of solids in patients with inactive Crohn’s disease. BMC Gastroenterology, 12: 175.Google Scholar
Nonaka, T., Inamori, M., Endo, H., Matsuura, M., Uchiyama, S., Yamada, E., … & Maeda, S. (2014). Correlation between gastric transit time measured by video capsule endoscopy and gastric emptying determined by the continuous real-time 13C breath test (Breath ID system). Hepatogastroenterology, 61: 21592162.Google Scholar
Ogawa, A., Mizuta, I., Fukunaga, T., Takeuchi, N., Honaga, E., Sugita, Y., … & Takeda, M. (2004). Electrogastrography abnormality in eating disorders. Psychiatry and Clinical Neurosciences, 58: 300310.Google Scholar
O’Grady, G., Angeli, T., Du, P., Lahr, C., Lammers, W. J., Windsor, J. A., … & Cheng, L. K. (2012). Abnormal initiation and conduction of slow wave activity in gastroparesis defined by a high resolution electrical mapping. Gastroenterology, 143: 589598.Google Scholar
Peyrot des Gachons, C., Beauchamp, G. K., Stern, R. M., Koch, K. L., & Breslin, P. A. (2011). Bitter taste induces nausea. Current Biology, 21: R247R248.Google Scholar
Qin, S., Miao, L., Xi, N., Wang, Y., & Yang, C. (2010). A real-time weighted-eigenvector MUSIC method for time-frequency analysis of electrogastrogram slow wave. In Proceedings of the IEEE Engineering in Medicine and Biological Society, 2010 (pp. 867870). Piscataway, NJ: IEEE.Google Scholar
Read, N. W., An-Janabi, M. N., Bates, T. E., Holgate, A. M., Cann, P. A., Kinsman, R. I., … & Brown, C. (1985). Interpretation of the breath hydrogen profile obtained after ingesting a solid meal containing unabsorbable carbohydrate. Gut, 26: 834842.Google Scholar
Riezzo, G., Castellana, R. M., De Bellis, T., Laforgia, F., Indrio, F., & Chilorio, M. (2003). Gastric electrical activity in normal neonates during the first year of life: effect of feeding with breast milk and formula. Journal of Gastroenterology, 38: 836843.Google Scholar
Riezzo, G., Porcelli, P., Guerra, V., & Giorgio, I. (1996). Effects of different psychophysiological stressors on the cutaneous electrogastrogram in healthy subjects. Archives of Physiology and Biochemistry, 104: 282286.Google Scholar
Roman, C. & Gonella, J. (1987). Extrinsic control of digestive tract motility. In Johnson, L. R., Christensen, J., Jacobsen, E. D., & Schultz, S. G. (eds.), Physiology of the Gastrointestinal Tract (pp. 507553). New York: Raven Press.Google Scholar
Sarna, S. K. (2002). Myoelectrical and contractile activities of the gastrointestinal tract. In Schuster, M. M., Crowell, M. D., & Koch, K. L. (eds.), Schuster Atlas of Gastrointestinal Motility, 2nd edn. (pp. 118). Hamilton, ON: Decker.Google Scholar
Schlegel, J. F. & Code, C. F. (1975). The gastric peristalsis of the interdigestive housekeeper. In Vantrappen, G. (ed.), Proceedings from the Fifth International Symposium on Gastrointestinal Motility (p. 321). Herentals, Belgium: Typoff Press.Google Scholar
Sciarretta, G., Furno, A., Mazzoni, M., Garagnani, B., & Malagut, P. (1994). Lactulose hydrogen breath test in orocecal transit assessment: critical evaluation by means of scintigraphic method. Digestive Diseases and Sciences, 39: 15051510.Google Scholar
Sclocco, R., Kim, J., Garcia, R. G., Sheehan, J. D., Beissner, F., Bianchi, A. M., … & Napadow, V. (2016). Brain circuitry supporting multi-organ autonomic outflow in response to nausea. Cerebral Cortex, 26: 485497.Google Scholar
Scott, B. K., Koch, K. L., & Westcott, C. J. (2014). Pyloroplasty for patients with medically-refractory functional obstructive gastroparesis. Gastroenterology, 146: S615.Google Scholar
Smallwood, R. H. (1978). Analysis of gastric electrical signals from surface electrodes using phase-lock techniques. Part 2: System performance with gastric signals. Medical and Biological Engineering and Computing, 16: 513518.Google Scholar
Smallwood, R. H. & Brown, B. H. (1983). Non-invasive assessment of gastric activity. In Rolfe, P. (ed.), Non-Invasive Physiological Measurements, Volume 2. London: Academic Press.Google Scholar
Smout, A. J. P. M. (1980). Myoelectric activity of the stomach: gastroelectromyography and electrogastrography. Unpublished thesis, Erasmus University, Rotterdam.Google Scholar
Smout, A. J. P. M., Jebbink, H. J. A., & Samsom, M. (1994). Acquisition and analysis of electrogastrographic data: the Dutch experience. In Chen, J. D. Z. & McCallum, R. W. (eds.), Electrogastrography: Principles and Applications (pp. 330). New York: Raven Press.Google Scholar
Smout, A. J. P. M., van der Schee, E. J., & Grashuis, J. L. (1980a). Postprandial and interdigestive gastric electrical activity in the dog recorded by means of cutaneous electrodes. In Christensen, J. (ed.), Gastrointestinal Motility (pp. 187194). New York: Raven Press.Google Scholar
Smout, A. J. P. M., van der Schee, E. J., & Grashuis, J. L. (1980b). What is measured in electrogastrography? Digestive Diseases and Sciences, 25: 179187.Google Scholar
Stemper, T. J. & Cooke, A. R. (1975). Gastric emptying and its relationship to antral contractile activity. Gastroenterology, 69: 649653.Google Scholar
Stern, R. M., Crawford, H. E., Stewart, W. R., Vasey, M. W., & Koch, K. L. (1989). Sham feeding: cephalic-vagal influences on gastric myoelectric activity. Digestive Diseases and Sciences, 34: 521527.Google Scholar
Stern, R. M., Jokerst, M. D., Levine, M. E., & Koch, K. L. (2001). The stomach’s response to unappetizing food: cephalic-vagal effects on gastric myoelectric activity. Neurogastroenterology and Motility, 13: 151154.Google Scholar
Stern, R. M. & Koch, K. L. (1994). Using the electrogastrogram to study motion sickness. In Chen, J. D. Z. & McCallum, R. W. (eds.), Electrogastrography: Principles and Applications. (pp. 199218). New York: Raven Press.Google Scholar
Stern, R. M. & Koch, K. L. (1996). Motion sickness and differential susceptibility. Current Directions in Psychological Science, 5: 115120.Google Scholar
Stern, R. M., Koch, K. L., & Andrews, P. L. R. (2011). Nausea: Mechanisms and Management. Oxford University Press.Google Scholar
Stern, R. M., Koch, K. L., Leibowitz, H. W., Lindblad, I., Shupert, C., & Stewart, W. R. (1985). Tachygastria and motion sickness. Aviation Space and Environmental Medicine, 56: 10741077.Google Scholar
Stern, R. M., Koch, K. L., & Muth, E. R. (2000). Gastrointestinal system. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (eds.), Handbook of Psychophysiology, 2nd edn. (pp. 294314). Cambridge University Press.Google Scholar
Stern, R. M., Koch, K. L., Stewart, W. R., & Lindblad, I. M. (1987). Spectral analysis of tachygastria recorded during motion sickness. Gastroenterology, 92: 9297.Google Scholar
Stern, R. M. & Stacher, G. (1982). Recording the electrogastrogram from parts of the body surface distant from the stomach. Psychophysiology, 19: 350.Google Scholar
Stern, R. M., Vasey, M. W., Hu, S., & Koch, K. L. (1991). Effects of cold stress on gastric myoelectric activity. Journal of Gastrointestinal Motility, 3: 225228.Google Scholar
Stern, R. M., Vitellaro, K., Thomas, M., Higgins, S. C., & Koch, K. L. (2004). Electrogastrographic biofeedback: a technique for enhancing normal gastric activity. Neurogastroenterology and Motility, 16: 753757.Google Scholar
Stoddard, C. J., Smallwood, R. H., & Duthie, H. L. (1981). Electrical arrhythmias in the human stomach. Gut, 22: 705712.Google Scholar
Thompson, D. G., Richelson, E., & Malagelada, J. R. (1982). Perturbation of gastric emptying and duodenal motility through the central nervous system. Gastroenterology, 83: 12001206.Google Scholar
Thunberg, L. (1989). Interstitial cells of Cajal. In Wood, J. D. (ed..), Handbook of Physiology: The Gastrointestinal System (pp. 349386). Bethesda, MD: American Physiological Society.Google Scholar
Uijtdehaage, S. H. J., Stern, R. M., & Koch, K. L. (1992) Effects of eating on vection-induced motion sickness, cardiac vagal tone and gastric myoelectric activity. Psychophysiology, 29: 193201.Google Scholar
Van der Schee, E. J., Smout, A. J. P. M., & Grashuis, J. L. (1982). Applications of running spectrum analysis to electrogastrographic signals recorded from dog and man. In Wienbeck, M. (ed.), Motility of the Digestive Tract (pp. 241250). New York: Raven Press.Google Scholar
Vantrappen, G., Hostein, J., Janssens, J., Vanderweerd, M., & De Wever, I. (1983). Do slow waves induce mechanical activity?Gastroenterology, 84: 1341.Google Scholar
Vantrappen, G., Janssens, J., Peeters, T. L., Bloom, S., R., Christofides, N. D., & Hellemans, J. (1979). Motility and the interdigestive migrating motor complex in man. Digestive Diseases and Sciences, 24: 497500.Google Scholar
Verbeke, K. (2009). Will the 13C-octanoic acid breath test ever replace scintigraphy as the gold standard to assess gastric emptying? Neurogastroenterology and Motility, 21: 10131016.Google Scholar
ver Hagen, M. A. M. T., Luijk, H. D., Samsom, M., & Smout, A. J. P. M. (1998). Effect of meal temperature on the frequency of gastric myoelectrical activity. Neurogastroenterolog and Motility, 10: 175181.Google Scholar
Vianna, E. P. M., Naqvi, N., Bechara, A., & Tranel, D. (2009). Does vivid emotional imagery depend on body signals? International Journal of Psychophysiology, 72: 4650.Google Scholar
Vianna, E. P. M. & Tranel, D. (2006). Gastric myoelectrical activity as an index of emotional arousal. International Journal of Psychophysiology, 61: 7076.Google Scholar
Vianna, E. P. M., Weinstock, J., Elliott, D., Summers, R., & Tranel, D. (2006). Increased feelings with increased body signals. Social, Cognitive, and Affective Neuroscience, 1: 3748.Google Scholar
Wolf, S. (1943). Relation of gastric function to nausea in man. Journal of Clinical Investigations, 22: 877882.Google Scholar
Wolf, S. & Wolff, H. G. (1943). Human Gastric Function. Oxford University Press.Google Scholar
Wood, J. D. (2002). Neural and humoral regulation of gastrointestinal motility. In Schuster, M. M., Crowell, M. D., & Koch, K. L. (eds.), Atlas of Gastrointestinal Motility, 2nd edn. (pp. 1942). Hamilton, ON: Decker.Google Scholar
Xu, L., Koch, K. L., Gianaros, P. J., Schreibman, I. R., Ku, M., & Rolls, B. J. (2002). The effects of soup, casserole, and water ingestion on gastric myoelectrical activity and perception of hunger and fullness. Gastroenterology, 122: A326.Google Scholar
Xu, X., Chen, D. D., Yin, J., & Chen, J. D. Z. (2014). Altered postprandial responses in gastric myoelectrical activity and cardiac autonomic functions in healthy obese subjects. Obesity Surgery, 24: 554560.Google Scholar
Yin, J. & Chen, J. D. Z. (2013). Electrogastrography: methodology, validation, and applications. Journal of Neurogastroenterology and Motility, 19: 517.Google Scholar
You, C. H. & Chey, W. Y. (1984). Study of electromechanical activity of the stomach in humans and in dogs with particular attention to tachygastria. Gastroenterology, 86: 14601468.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×