Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-27T16:29:31.039Z Has data issue: false hasContentIssue false

7 - Signals and systems on 2-sphere

from III - Applications

Published online by Cambridge University Press:  05 March 2013

Rodney A. Kennedy
Affiliation:
Australian National University, Canberra
Parastoo Sadeghi
Affiliation:
Australian National University, Canberra
Get access

Summary

Introduction

The processing of signals whose domain is the 2-sphere or unit sphere1 has been an ongoing area of research in the past few decades and is becoming increasingly more active. Such signals are widely used in geodesy and planetary studies (Simons et al., 1997; Wieczorek and Simons, 2005; Simons et al., 2006; Audet, 2011). In many cases of interest flat Euclidean modeling of planetary and heavenly data does not work. Planetary curvature should be taken into account especially for small heavenly bodies such as the Earth, Venus, Mars, and the Moon (Wieczorek, 2007). Other applications, for the processing of signals on the 2-sphere, include the study of cosmic microwave background in cosmology (Wiaux et al., 2005; Starck et al., 2006; Spergel et al., 2007), 3D beamforming/sensing (Simons et al., 2006; Górski et al., 2005; Armitage and Wandelt, 2004; Ng, 2005; Wandelt and Górski, 2001; Rafaely, 2004; Wiaux et al., 2006), computer graphics and computer vision (Brechbühler et al., 1995; Schröder and Sweldens, 2000; Han et al., 2007), electromagnetic inverse problems (Colton and Kress, 1998), brain cortical surface analysis in medical imaging (Yu et al., 2007; Yeo et al., 2008), and channel modeling for wireless communication systems (Pollock et al., 2003; Abhayapala et al., 2003). This type of processing exhibits important differences from the processing of signals on Euclidean domains—such as time-based signals whose domain is the real line R, or 2D or 3D signals and images, whose domain is multi-dimensional, but still Euclidean.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×