Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-20T12:18:21.506Z Has data issue: false hasContentIssue false

Radiotherapy in cancer treatment

Published online by Cambridge University Press:  06 July 2010

Omer Aziz
Affiliation:
St Mary's Hospital, London
Sanjay Purkayastha
Affiliation:
St Mary's Hospital, London
Paraskevas Paraskeva
Affiliation:
St Mary's Hospital, London
Get access

Summary

Radiotherapy remains a mainstay in the treatment of cancer. Comparison of the contribution towards cure by the major cancer treatment modalities shows that of those cured, 49% are cured by surgery, 40% by radiotherapy and 11% by chemotherapy. Many more patients may benefit from radiotherapy to enhance quality of life through palliation of symptoms of recurrent or metastatic disease.

Definition

Radiotherapy is the use of ionizing radiation to treat disease. Ionizing radiation may be delivered by X-ray beams, beams of ionizing particles such as electrons, or by beta or gamma irradiation produced by the decay of radioactive isotopes.

Biological action of ionizing radiation

Ionizing radiation causes damage to cellular DNA both directly, and indirectly through toxic free radicals produced when radiation interacts with water within the cell. Rapidly proliferating cells are particularly sensitive to this damage. This leads to single and double DNA-strand breakage and unless repaired, causes reproductive death of the cell. Ionizing radiation can also cause DNA base mutation, and a risk of late carcinogenesis; an important consideration in the treatment of children, young adults and benign diseases with radiation.

External beam radiotherapy: X-rays, gamma-rays (clinically equivalent to X-rays but produced by radionuclide decay) or electrons emitted from an external source are incident on the skin and deposit energy either superficially or more deeply, depending on the characteristics of the beam. High-energy, penetrating therapeutic X-ray beams (and electrons) are typically produced by megavoltage linear accelerators. This complex equipment is located in radiotherapy departments, housed in bunkers to minimize radiation exposure to staff when the machine is activated.

Type
Chapter
Information
Hospital Surgery
Foundations in Surgical Practice
, pp. 580 - 586
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×