Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-09T14:35:21.123Z Has data issue: false hasContentIssue false

13 - Hull-wake characteristics

Published online by Cambridge University Press:  07 May 2010

John P. Breslin
Affiliation:
Stevens Institute of Technology, New Jersey
Poul Andersen
Affiliation:
Technical University of Denmark, Lyngby
Get access

Summary

It is well known that the flow abaft of ships is both spatially and temporally varying. This variability arises from the “prior” or upstream history of the flow produced by the action of viscous stresses and hull-pressure distribution acting on the fluid particles as they pass around the ship from the bow to the stern. Thus the blade sections “see” gust patterns which over long term have mean amplitudes but from instant-to-instant change rapidly with time because of the inherent unsteadiness of the turbulent boundary layer.

Our knowledge of the distribution of flow in the propeller disc is almost entirely based on pitot-tube surveys conducted on big (≈ 6 m) models in large towing tanks and in the absence of the propeller. These are termed nominal wake flows. As is well appreciated, pitot-tube measurements provide only long-term averages of the velocity components at various angular and radial locations in the midplane of the propeller. These measurements depend upon the calibration of the pitot-tube in uniform flow whereas the wake flow radially and tangentially has the effect of shifting the stagnation point on the pitot-tube head, a mechanism not operating in the calibration mode. Thus there is a systematic error which is, to the authors' knowledge, not generally corrected. Moreover, wake-fraction (and thrust-deduction) calculations based upon tests with the same model in several large model basins and upon repetitive tests with the same model in the same large model basin, have shown remarkably different results. A similar scatter was also found in results of wake surveys.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Hull-wake characteristics
  • John P. Breslin, Stevens Institute of Technology, New Jersey, Poul Andersen, Technical University of Denmark, Lyngby
  • Book: Hydrodynamics of Ship Propellers
  • Online publication: 07 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511624254.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Hull-wake characteristics
  • John P. Breslin, Stevens Institute of Technology, New Jersey, Poul Andersen, Technical University of Denmark, Lyngby
  • Book: Hydrodynamics of Ship Propellers
  • Online publication: 07 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511624254.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Hull-wake characteristics
  • John P. Breslin, Stevens Institute of Technology, New Jersey, Poul Andersen, Technical University of Denmark, Lyngby
  • Book: Hydrodynamics of Ship Propellers
  • Online publication: 07 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511624254.015
Available formats
×