Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-09T14:35:21.181Z Has data issue: false hasContentIssue false

14 - Pressure fields generated by blade loading and thickness in uniform flows; comparisons with measurements

Published online by Cambridge University Press:  07 May 2010

John P. Breslin
Affiliation:
Stevens Institute of Technology, New Jersey
Poul Andersen
Affiliation:
Technical University of Denmark, Lyngby
Get access

Summary

In this chapter the pressure fields induced by the loading and thickness distributions on a single blade will be derived. They are found to be composed of pressure dipoles (for the loading) distributed with axes normal to the fluid helical reference surface in way of the blade and tangentially directed dipoles along this surface for the thickness. The expressions are then expanded in exponential Fourier series to facilitate determination of the total contributions from Z blades. This reveals that the pressure “signature” contains only components at integer multiples of blade number. The behaviour at large axial distances at blade frequency is examined analytically and the variation of the weighting functions in the integrals for small axial distance is displayed graphically via computer evaluation. The chapter concludes with comparisons with measurements and with various approximate evaluations of the integrals involved made in the past.

PRESSURE RELATIVE TO FIXED AXES

We shall derive the induced pressures in a fixed coordinate system. In this system the propeller sees an axial inflow (in the negative direction) while it rotates about the x-axis. The pressure is derived at a fixed point so this situation corresponds to finding the pressure induced by the propeller at a point which travels along with the ship and is fixed, for example on the ship surface. Note however that neither the varying wake, mirror effects of the ship surface nor the influence of the free surface will be considered at present as they will be dealt with later (in Chapters 15, 21 and 22).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×