Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-09T14:35:21.372Z Has data issue: false hasContentIssue false

12 - Propeller design via computer and practical considerations

Published online by Cambridge University Press:  07 May 2010

John P. Breslin
Affiliation:
Stevens Institute of Technology, New Jersey
Poul Andersen
Affiliation:
Technical University of Denmark, Lyngby
Get access

Summary

Here we present the essential steps in the problems posed by the design and analysis of propellers. In design we are required to develop the diameter, pitch, camber and blade section to deliver a required thrust at maximum efficiency (minimum torque). There are other criteria such as to design a propeller to drive a given hull (of known or predicted resistance over a range of speeds) with a specified available shaft horsepower and to determine the ship speed.

The analysis procedure requires prediction of the thrust, torque and efficiency of propellers of specified geometry and inflow.

We begin with the development of the criteria for the radial distribution of thrust-density to achieve maximum efficiency in uniform and non-uniform inflows. This is followed by methods for determining optimum diameter for given solutions and optimum solutions for a given diameter.

The derivation and reason for the induction factors in the lifting-line theory of discrete number of blades, as displayed in the previous chapter, is followed by formulas for the thrust and torque coefficients in terms of the circulation amplitude function Gn.

Applications are then made to the design and analysis of propellers. Means for selection of blade sections to avoid or mitigate cavitation are followed by extensive discussion of practical aspects of tip unloading via camber and pitch variation. Effects of blade form and skew on efficiency and pressure fluctuations at blade frequency (number of blades times revolution per second) are presented.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×