Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-07T18:20:36.959Z Has data issue: false hasContentIssue false

12 - Non-uniform flow in fluid components

Published online by Cambridge University Press:  14 January 2010

E. M. Greitzer
Affiliation:
Massachusetts Institute of Technology
C. S. Tan
Affiliation:
Massachusetts Institute of Technology
M. B. Graf
Affiliation:
Mars & Co
Get access

Summary

Introduction

In this chapter the discussion of fluid component and system response to disturbances, begun in Chapter 6, is extended to a broader class of flow non-uniformities. Whereas Chapter 6 considered primarily one-dimensional disturbances, that restriction is now dropped and we address more general (two- and three-dimensional) non-uniformities with variations transverse to the bulk flow direction. Examples of interest are turbomachines subjected to circumferentially varying inlet conditions and the behavior of components with geometry generated non-uniformity, such as is caused by a contraction or a bend in close proximity.

Three important issues relating to these situations can be identified. One is the effect of the fluid component on the flow non-uniformity, or distortion: how are the non-uniformities altered by passage through the component? A second is the effect of the non-uniformity on the component: how does the distortion modify the component performance? The approaches needed to address these two questions are fundamentally different. For the former, qualitative aspects, and even many quantitative features, can be resolved within the framework of a linearized description. For the latter, however, the problem is inherently nonlinear and a different level of analysis is needed. Beyond component performance there is a third issue. Because fluid components typically occur as part of an overall system, what changes in interactions with the rest of the system arise due to the non-uniformity?

Several integrating themes thread through the different applications discussed. The first is that fluid components do not passively accept non-uniform flow but play a major role in modifying the velocity distribution.

Type
Chapter
Information
Internal Flow
Concepts and Applications
, pp. 615 - 682
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×