Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-09T08:15:08.443Z Has data issue: false hasContentIssue false

3 - Vorticity and circulation

Published online by Cambridge University Press:  14 January 2010

E. M. Greitzer
Affiliation:
Massachusetts Institute of Technology
C. S. Tan
Affiliation:
Massachusetts Institute of Technology
M. B. Graf
Affiliation:
Mars & Co
Get access

Summary

Introduction

In many internal flows there are only limited regions in which the velocity can be considered irrotational; i.e. in which the motion is such that particles travel without local rotation. In an irrotational, or potential, flow the velocity can be expressed as the gradient of a scalar function. This condition allows great simplification and, where it can be employed, is of enormous utility. Although we have given examples of its use, potential flow theory has a narrower scope in internal flow than in external flow and the description and analysis of non-potential, or rotational, motions plays a larger role in the former than in the latter. One reason for this difference is the greater presence of bounding solid surfaces and the accompanying greater opportunity for viscous shear forces to act. Even in those internal flow configurations in which the flow can be considered inviscid, however, different streamtubes can receive different amounts of energy (from fluid machinery, for example), resulting in velocity distributions which do not generally correspond to potential flows. Because of this, we now examine two key fluid dynamic concepts associated with rotational flows: vorticity, which has to do with the local rate of rotation of a fluid particle, and circulation, a related, but more global, quantity.

Before formally introducing these concepts, it is appropriate to give some discussion concerning the motivation for working with them, rather than velocity and pressure fields only. The equations of motion for a fluid contain expressions of forces and acceleration, derived from Newton's laws.

Type
Chapter
Information
Internal Flow
Concepts and Applications
, pp. 104 - 165
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×