Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-29T08:29:18.654Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 October 2016

Sébastien Galtier
Affiliation:
École Polytechnique, Paris
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramenko, V. I. 2005. Relationship between magnetic power spectrum and flare productivity in solar active regions. Astrophys. J., 629, 1141–1149.Google Scholar
Abramenko, V. I., Yurchyshyn, V. B., Wang, H., Spirock, T. J., and Goode, P. R. 2002. Scaling behavior of structure functions of the longitudinal magnetic field in active regions on the Sun. Astrophys. J., 577, 487–495.Google Scholar
Alexandrova, O., Lacombe, C., Mangeney, A., Grappin, R., and Maksimovic, M. 2012. Solar wind turbulent spectrum at plasma kinetic scales. Astrophys. J., 760, 121.Google Scholar
Alfvén, H. 1942. Existence of electromagnetic–hydrodynamic waves. Nature, 150, 405–406.Google Scholar
Alfvén, H. 1942. On the existence of electromagnetic–hydrodynamic waves. Ark. Mat. Astron. och Fys., 29, 1–7.Google Scholar
Allen, T. K., Baker, W. R., Pyle, R. V., and Wilcox, J. M. 1959. Experimental generation of plasma Alfvén waves. Phys. Rev. Lett., 2, 383–384.Google Scholar
Antonia, R. A., and Burattini, P. 2006. Approach to the 4/5 law in homogeneous isotropic turbulence. J. Fluid Mech., 550, 175–184.Google Scholar
Antonia, R. A., Ould-Rouis, M., Anselmet, F., and Zhu, Y. 1997. Analogy between predictions of Kolmogorov and Yaglom. J. Fluid Mech., 332, 395–409.Google Scholar
Arzoumanian, D., André, P., Didelon, P. et al. 2011. Characterizing interstellar filaments with Herschel in IC 5146. Astron. Astrophys., 529, L6.Google Scholar
Aubourg, Q., and Mordant, N. 2015. Nonlocal resonances in weak turbulence of gravity– capillary waves. Phys. Rev. Lett., 114, 144501.Google Scholar
Aulanier, G., DeLuca, E. E., Antiochos, S. K., McMullen, R. A., and Golub, L. 2000. The topology and evolution of the Bastille Day flare. Astrophys. J., 540, 1126–1142.Google Scholar
Aulanier, G., Pariat, E., Démoulin, P., and DeVore, C. R. 2006. Slip-running reconnection in quasi-separatrix layers. Sol. Phys., 238, 347–376.Google Scholar
Aunai, N., Belmont, G., and Smets, R. 2011. Ion acceleration in antiparallel collisionless magnetic reconnection: Kinetic and fluid aspects. Comptes Rendus Phys., 12, 141–150.Google Scholar
Balbus, S. A., and Hawley, J. F. 1991. A powerful local shear instability in weakly magnetized disks. I – Linear analysis. Astrophys. J., 376, 214–233.Google Scholar
Banerjee, S., and Galtier, S. 2013. Exact relation with two-point correlation functions and phenomenological approach for compressible magnetohydrodynamic turbulence. Phys. Rev. E, 87(1), 013019.Google Scholar
Baumjohann, W., and Treumann, R. A. 1996. Basic Space Plasma Physics. Imperial College Press.
Belmont, G., Grappin, R., Mottez, F., Pantellini, F., and Pelletier, G. 2013. Collisionless Plasmas in Astrophysics. Wiley.
Benney, J., and Newell, A. C. 1966. Random wave closures. Studies Appl. Math., 48, 29–53.Google Scholar
Beresnyak, A. 2011. Spectral slope and Kolmogorov constant of MHD turbulence. Phys. Rev. Lett., 106(7), 075001.Google Scholar
Berger, M. A., and Field, G. B. 1984. The topological properties of magnetic helicity. J. Fluid Mech., 147, 133–148.Google Scholar
Berhanu, M., Monchaux, R., Fauve, S. et al. 2007. Magnetic field reversals in an experimental turbulent dynamo. Europhys. Lett., 77, 59001.Google Scholar
Bewley, G. P., Paoletti, M. S., Sreenivasan, K. R., and Lathrop, D. P. 2008. Characterization of reconnecting vortices in superfluid helium. Proc. Nat. Acad. Sci., 105, 13707–13710.Google Scholar
Bhattacharjee, A. 2004. Impulsive magnetic reconnection in the Earth's magnetotail and the solar corona. Ann. Rev. Astron. Astrophys., 42, 365–384.Google Scholar
Bigot, B., Galtier, S., and Politano, H. 2008a. An anisotropic turbulent model for solar coronal heating. Astron. Astrophys., 490, 325–337.Google Scholar
Bigot, B., Galtier, S., and Politano, H. 2008b. Development of anisotropy in incompressible magnetohydrodynamic turbulence. Phys. Rev. E, 78(6), 066301.Google Scholar
Biskamp, D. 1986. Magnetic reconnection via current sheets. Phys. Fluids, 29, 1520– 1531.Google Scholar
Biskamp, D. 2000. Magnetic Reconnection in Plasmas. Cambridge University Press.
Biskamp, D. 2003. Magnetohydrodynamic Turbulence. Cambridge University Press.
Biskamp, D., Schwarz, E., and Drake, J. F. 1996. Two-dimensional electron magnetohydrodynamic turbulence. Phys. Rev. Lett., 76, 1264–1267.Google Scholar
Boldyrev, S. 2006. Spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett., 96(11), 115002.Google Scholar
Boltzmann, L. 1872. Weitere Studien über dasWärmegleichgewicht unter Gasmolekülen. Wiener Berichte, 66, 275–370.Google Scholar
Bostick, W. H., and Levine, M. A. 1952. Experimental demonstration in the laboratory of the existence of magneto-hydrodynamic waves in ionized helium. Phys. Rev., 87, 671–671.Google Scholar
Braginskii, S. I. 1965. Transport processes in a plasma. Rev. Plasma Phys., 1, 205–311.Google Scholar
Brandenburg, A., and Subramanian, K. 2005. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep., 417, 1–209.Google Scholar
Buchlin, E., and Velli, M. 2007. Shell models of reduced MHD turbulence and the heating of solar coronal loops. Astrophys. J., 662, 701–714.Google Scholar
BullardSir, E. 1955. The stability of a homopolar dynamo. Proc. Cambridge Phil. Soc., 51, 744–760.Google Scholar
Busse, F. H., and Wicht, J. 1992. A simple dynamo caused by conductivity variations. Geophys. Astrophys. Fluid Dyn., 64, 135–144.Google Scholar
Campagne, A., Gallet, B., Moisy, F., and Cortet, P.-P. 2015. Disentangling inertial waves from eddy turbulence in a forced rotating-turbulence experiment. Phys. Rev. E, 91(4), 043016.Google Scholar
Canou, A., and Amari, T. 2010. A twisted flux rope as the magnetic structure of a filament in Active Region 10953 observed by Hinode. Astrophys. J., 715, 1566–1574.Google Scholar
Carbone, V., Bruno, R., Sorriso-Valvo, L., and Lepreti, F. 2004. Intermittency of magnetic turbulence in slow solar wind. Plan. Space Sci., 52, 953–956.Google Scholar
Chabrier, G., and Hennebelle, P. 2011. Dimensional argument for the impact of turbulent support on the stellar initial mass function. Astron. Astrophys., 534, A106.Google Scholar
Chandran, B. D. G. 2010. Alfvén-wave turbulence and perpendicular ion temperatures in coronal holes. Astrophys. J., 720, 548–554.Google Scholar
Chandrasekhar, S. 1960. The stability of non-dissipative Couette flow in hydromagnetics. Proc. Nat. Acad. Sci., 46, 253–257.Google Scholar
Chapman, S. 1931. The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Proc. Phys. Soc., 43, 26–45.Google Scholar
Cho, J., and Vishniac, E. T. 2000. The anisotropy of magnetohydrodynamic Alfvénic turbulence. Astrophys. J., 539, 273–282.Google Scholar
Clark, di Leoni, P., Cobelli, P. J., and Mininni, P. D. 2014. Wave turbulence in shallow water models. Phys. Rev. E, 89(6), 063025.Google Scholar
Cook, A. E., and Roberts, P. H. 1970. The Rikitake two-disc dynamo system. Proc. Camb. Phil. Soc., 68, 547.Google Scholar
Cooper, C. M., Wallace, J., Brookhart, M. et al. 2014. The Madison plasma dynamo experiment: A facility for studying laboratory plasma astrophysics. Phys. Plasmas, 21(1), 013505.Google Scholar
Cowling, T. G. 1933. The magnetic field of sunspots. Month. Not. Roy. Astron. Soc., 94, 39–48.Google Scholar
Crémer, P., and Alemany, A. 1981. Aspects expérimentaux du brassage électromagnétique en creuset. J. Méc. Appl., 5, 37–50.Google Scholar
Daughton, W., Roytershteyn, V., Albright, B. J. et al. 2009. Transition from collisional to kinetic regimes in large-scale reconnection layers. Phys. Rev. Lett., 103(6), 065004.Google Scholar
Davidson, P. A. 2001. An Introduction to Magnetohydrodynamics. Cambridge University Press.
Davidson, P. A. 2004. Turbulence: An Introduction for Scientists and Engineers. Cambridge University Press.
De Pontieu, B.,McIntosh, S. W., Carlsson, M. et al. 2007. Chromospheric Alfvénic waves strong enough to power the solar wind. Science, 318, 1574–1577.Google Scholar
Diamond, P. H., Itoh, S.-I., and Itoh, K. 2010. Modern Plasma Physics. Cambridge University Press.
Dubrulle, B. 1994. Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance. Phys. Rev. Lett., 73, 959–962.Google Scholar
Elsässer, W. M. 1950. The hydromagnetic equations. Phys. Rev., 79, 183–183.Google Scholar
FalconÉ, , Laroche, C., and Fauve, S. 2007. Observation of gravity-capillary wave turbulence. Phys. Rev. Lett., 98(9), 094503.Google Scholar
Falthammar, C. 2007. The discovery of magnetohydrodynamic waves. J. Atmos. Solar– Terrestrial Phys., 69, 1604–1608.Google Scholar
Ferreira, J. 1997. Magnetically-driven jets from Keplerian accretion discs. Astron. Astrophys., 319, 340–359.Google Scholar
Feynman, R. P., Leighton, R. B., and Sands, M. 1964. The Feynman Lectures on Physics. Mainly Electromagnetism and Matter. Volume 2. Addison-Wesley Publishing Company.
Frisch, U. 1995. Turbulence. The Legacy of A. N. Kolmogorov. Cambridge University Press.
Frisch, U., Pouquet, A., Leorat, J., and Mazure, A. 1975. Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. J. Fluid Mech., 68, 769–778.Google Scholar
Frisch, U., Sulem, P.-L., and Nelkin, M. 1978. A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech., 87, 719–736.Google Scholar
Gailitis, A., Lielausis, O., Dement'ev, S. et al. 2000. Detection of a flow induced magnetic field eigenmode in the Riga Dynamo Facility. Phys. Rev. Lett., 84, 4365–4368.Google Scholar
Galanti, B., and Tsinober, A. 2004. Is turbulence ergodic? Phys. Lett. A, 330, 173–180.Google Scholar
Galtier, S. 2006. Wave turbulence in incompressible Hall magnetohydrodynamics. J. Plasma Phys., 72, 721–769.Google Scholar
Galtier, S. 2008. Von Kármán–Howarth equations for Hall magnetohydrodynamic flows. Phys. Rev. E, 77(1), 015302.Google Scholar
Galtier, S. 2012. Kolmogorov vectorial law for solar wind turbulence. Astrophys. J., 746, 184.Google Scholar
Galtier, S. 2014. Weak turbulence theory for rotating magnetohydrodynamics and planetary flows. J. Fluid Mech., 757, 114–154.Google Scholar
Galtier, S., and Banerjee, S. 2011. Exact relation for correlation functions in compressible isothermal turbulence. Phys. Rev. Lett., 107(13), 134501.Google Scholar
Galtier, S., Politano, H., and Pouquet, A. 1997. Self-similar energy decay in magnetohydrodynamic turbulence. Phys. Rev. Lett., 79, 2807–2810.Google Scholar
Galtier, S., Nazarenko, S. V., Newell, A. C., and Pouquet, A. 2000. A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys., 63, 447–488.Google Scholar
Galtier, S., Pouquet, A., and Mangeney, A. 2005. On spectral scaling laws for incompressible anisotropic magnetohydrodynamic turbulence. Phys. Plasmas, 12(9), 092310.Google Scholar
Glatzmaier, G. A., and Roberts, P. H. 1995. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature, 377(Sept.), 203–209.Google Scholar
Goedbloed, J. P., Keppens, R., and Poedts, S. 2010. Advanced Magnetohydrodynamics. Cambridge University Press.
Goldreich, P., and Julian, W. H. 1969. Pulsar electrodynamics. Astrophys. J., 157, 869–880.Google Scholar
Goldreich, P., and Sridhar, S. 1995. Toward a theory of interstellar turbulence. 2: Strong Alfvénic turbulence. Astrophys. J., 438, 763–775.Google Scholar
Grappin, R., Frisch, U., Pouquet, A., and Leorat, J. 1982. Alfvénic fluctuations as asymptotic states of MHD turbulence. Astron. Astrophys., 105, 6–14.Google Scholar
Grauer, R., Krug, J., and Marliani, C. 1994. Scaling of high-order structure functions in magnetohydrodynamic turbulence. Phys. Lett. A, 195, 335–338.Google Scholar
Haines, M. G., Lepell, P. D., Coverdale, C. A. et al. 2006. Ion viscous heating in a magnetohydrodynamically unstable Z Pinch at over 2×109 kelvin. Phys. Rev. Lett., 96, 075003.Google Scholar
Heisenberg, W. 1948. Zur statistischen Theorie der Turbulenz. Z. Phys., 124, 628–657.Google Scholar
Heyer, M. H., and Brunt, C. M. 2004. The universality of turbulence in galactic molecular clouds. Astrophys. J., 615, L45–L48.Google Scholar
Heyvaerts, J., and Priest, E. R. 1983. Coronal heating by phase-mixed shear Alfvén waves. Astron. Astrophys., 117, 220–234.Google Scholar
Higdon, J. C. 1984. Density fluctuations in the interstellar medium: Evidence for anisotropic magnetogasdynamic turbulence. I – Model and astrophysical sites. Astrophys. J., 285, 109–123.Google Scholar
Horbury, T. S., and Balogh, A. 1997. Structure function measurements of the intermittent MHD turbulent cascade. Nonlin. Proc. Geophys., 4, 185–199.Google Scholar
Hunana, P., Laveder, D., Passot, T., Sulem, P. L., and Borgogno, D. 2011. Reduction of compressibility and parallel transfer by Landau damping in turbulent magnetized plasmas. Astrophys. J., 743, 128.Google Scholar
Iroshnikov, R. S. 1964. Turbulence of a conducting fluid in a strong magnetic field. Soviet Astron., 7, 566–571.Google Scholar
Ji, H., Yamada, M., Hsu, S. et al. 1999. Magnetic reconnection with Sweet–Parker characteristics in two-dimensional laboratory plasmas. Phys. Plasmas, 6, 1743– 1750.Google Scholar
Kiyani, K. H., Chapman, S. C., Khotyaintsev, Y. V., Dunlop, M. W., and Sahraoui, F. 2009. Global scale-invariant dissipation in collisionless plasma turbulence. Phys. Rev. Lett., 103, 075006.Google Scholar
Kiyani, K. H., Osman, K. T., and Chapman, S. C. 2015. Dissipation and heating in solar wind turbulence: from the macro to the micro and back again. Phil. Trans. R. Soc. Lond. A, 373(2041), 1–10.Google Scholar
Kolmogorov, A. N. 1941. Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32, 16–18.Google Scholar
Kolmogorov, A. N. 1962. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech., 13, 82–85.Google Scholar
Kraichnan, R. H. 1958. Irreversible statistical mechanics of incompressible hydromagnetic turbulence. Phys. Rev., 109, 1407–1422.Google Scholar
Kraichnan, R. H. 1965. Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids, 8, 1385–1387.Google Scholar
Kraichnan, R. H. 1967. Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 1417–1423.Google Scholar
Kritsuk, A. G., Norman, M. L., Padoan, P., and Wagner, R. 2007. The statistics of supersonic isothermal turbulence. Astrophys. J., 665, 416–431.Google Scholar
Kruskal, M., and Schwarzschild, M. 1954. Some instabilities of a completely ionized plasma. R. Soc. Lond. Proc. A, 223, 348–360.Google Scholar
Landau, L. D. 1946. On the vibrations of the electronic plasma. J. Phys. USSR, 10, 25–34.Google Scholar
Langmuir, I. 1928. Oscillations in ionized gases. Proc. Nat. Acad. Sci., 14, 627.Google Scholar
Lehnert, B. 1954. Magneto-hydrodynamic waves in liquid sodium. Phys. Rev., 94, 815–824.Google Scholar
Leith, C. E. 1969. Diffusion approximation to spectral transfer in homogeneous turbulence. Phys. Fluids, 12, 285.Google Scholar
Lorenz, E. N. 1963. Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141.Google Scholar
Lundquist, S. 1949. Experimental investigations of magneto-hydrodynamic waves. Phys. Rev., 76, 1805–1809.Google Scholar
Luo, Q. Y., and Wu, D. J. 2010. Observations of anisotropic scaling of solar wind turbulence. Astrophys. J. Lett., 714, L138–L141.Google Scholar
Mandt, M. E., Denton, R. E., and Drake, J. F. 1994. Transition to whistler mediated magnetic reconnection. Geophys. Res. Lett., 21, 73–76.Google Scholar
Maxwell, J. C. 1873. A Treatise on Electricity and Magnetism. Clarendon Press.
Meyrand, R., and Galtier, S. 2012. Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence. Phys. Rev. Lett., 109, 194501.Google Scholar
Meyrand, R., and Galtier, S. 2013. Anomalous spectrum in electron magnetohydrodynamic turbulence. Phys. Rev. Lett., 111(26), 264501.Google Scholar
Meyrand, R., Kiyani, K. H., and Galtier, S. 2015. Weak magnetohydrodynamic turbulence and intermittency. J. Fluid Mech. Rapids, 770, R1.Google Scholar
Mininni, P. D., Gómez, D. O., and Mahajan, S. M. 2005. Direct simulations of helical Hall–MHD turbulence and dynamo action. Astrophys. J., 619, 1019–1027.Google Scholar
Moffatt, H. K. 1969. The degree of knottedness of tangled vortex lines. J. Fluid Mech., 35, 117–129.Google Scholar
Moffatt, H. K. 1970. Dynamo action associated with random inertial waves in a rotating conducting fluid. J. Fluid Mech., 44, 705–719.Google Scholar
Moffatt, H. K. 1978. Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.
Monchaux, R., Berhanu, M., Bourgoin, M. et al. 2007. Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. Phys. Rev. Lett., 98, 044502.Google Scholar
Mouhot, C., and Villani, C. 2010. Landau damping. J. Math. Phys., 51, 015204.Google Scholar
Mozer, F. S., Bale, S. D., and Phan, T. D. 2002. Evidence of diffusion regions at a subsolar magnetopause crossing. Phys. Rev. Lett., 89(1), 015002.Google Scholar
Müller, W.-C. 2009. Magnetohydrodynamic turbulence. Pages 223–254 of Hillebrandt, W., and Kupka, F. (eds.), Interdisciplinary Aspects of Turbulence. Springer Verlag.
Münch, G. 1958. Internal motions in the Orion nebula. Rev. Mod. Phys., 30, 1035–1041.Google Scholar
Nataf, H.-C., and Gagniére, N. 2008. On the peculiar nature of turbulence in planetary dynamos. Comptes Rendus Phys., 9, 702–710.Google Scholar
Nazarenko, S. 2011. Wave Turbulence. Springer Verlag.
Noether, E. 1918. Invariante variationsprobleme. Nachr. König. Gesellsch. Wiss. Göttingen, Math. Phys. Klasse, 1, 235–237.Google Scholar
Nore, C., Brachet, M. E., Politano, H., and Pouquet, A. 1997. Dynamo action in the Taylor–Green vortex near threshold. Phys. Plasmas, 4, 1–3.Google Scholar
Orszag, S. A. 1970. Analytical theories of turbulence. J. Fluid Mech., 41, 363–386.Google Scholar
Oughton, S., Priest, E. R., and Matthaeus, W. H. 1994. The influence of a mean magnetic field on three-dimensional magnetohydrodynamic turbulence. J. Fluid Mech., 280, 95–117.Google Scholar
Paret, J., and Tabeling, P. 1998. Intermittency in the two-dimensional inverse cascade of energy: Experimental observations. Phys. Fluids, 10, 3126–3136.Google Scholar
Parker, E. N. 1957. Sweet's mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res., 62, 509–520.Google Scholar
Parker, E. N. 1958. Dynamics of the interplanetary gas and magnetic fields. Astrophys. J., 128, 664–676.Google Scholar
Perez, J. C., and Boldyrev, S. 2008. On weak and strong magnetohydrodynamic turbulence. Astrophys. J. Lett., 672, L61–L64.Google Scholar
Pétrélis, F., Fauve, S., Dormy, E., and Valet, J.-P. 2009. Simple mechanism for reversals of Earth's magnetic field. Phys. Rev. Lett., 102(14), 144503.Google Scholar
Petschek, H. E. 1964. Magnetic field annihilation. NASA Special Publication, 50, 425.Google Scholar
Plunian, F., Stepanov, R., and Frick, P. 2013. Shell models of magnetohydrodynamic turbulence. Phys. Rep., 523, 1–60.Google Scholar
Podesta, J. J., Roberts, D. A., and Goldstein, M. L. 2007. Spectral exponents of kinetic and magnetic energy spectra in solar wind turbulence. Astrophys. J., 664, 543–548.Google Scholar
Poincaré, H. 1889. Sur le probléme des trois corps et les équations de la dynamique. Text presented to the Swedish Royal Academy.
Politano, H., and Pouquet, A. 1998. Von Kármán–Howarth equation for MHD and its consequences on third-order longitudinal structure and correlation functions. Phys. Rev. E, 57, R21–R24.Google Scholar
Ponomarenko, Y. B. 1973. Theory of the hydromagnetic generator. J. Appl. Mech. Tech. Phys., 14, 775–778.Google Scholar
Ponty, Y., and Plunian, F. 2011. Transition from large-scale to small-scale dynamo. Phys. Rev. Lett., 106(15), 154502.Google Scholar
Pouquet, A., Frisch, U., and Leorat, J. 1976. Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech., 77, 321–354.Google Scholar
Priest, E. 2014. Magnetohydrodynamics of the Sun. Cambridge University Press.
Ravelet, F., Berhanu, M., Monchaux, R. et al. 2008. Chaotic dynamos generated by a turbulent flow of liquid sodium. Phys. Rev. Lett., 101(7), 074502.
Richardson, L. F. 1922. Weather Predictions by Numerical Process. Cambridge University Press.
Rikitake, T. 1958. Oscillations of a system of disk dynamos. Proc. Cambridge Phil. Soc., 54, 89.Google Scholar
Roberts, G. O. 1970. Spatially periodic dynamos. R. Soc. Lond. Phil. Trans. Series A, 266, 535–558.Google Scholar
Rogers, B. N., Denton, R. E., Drake, J. F., and Shay, M. A. 2001. Role of dispersive waves in collisionless magnetic reconnection. Phys. Rev. Lett., 87, 195004.Google Scholar
Saddoughi, S. G., and Veeravalli, S. V. 1994. Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech., 268, 333–372.Google Scholar
Saur, J., Politano, H., Pouquet, A., and Matthaeus, W. H. 2002. Evidence for weak MHD turbulence in the middle magnetosphere of Jupiter. Astron. Astrophys., 386, 699–708.Google Scholar
Schekochihin, A. A., Cowley, S. C., Dorland, W. et al. 2009. Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl., 182, 310–377.Google Scholar
Schmidt, W., Federrath, C., and Klessen, R. 2008. Is the scaling of supersonic turbulence universal? Phys. Rev. Let., 101(19), 194505.Google Scholar
Servidio, S., Matthaeus, W. H., Shay, M. A., Cassak, P. A., and Dmitruk, P. 2009. Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence. Phys. Rev. Lett., 102(11), 115003.Google Scholar
She, Z.-S., and Leveque, E. 1994. Universal scaling laws in fully developed turbulence. Phys. Rev. Lett., 72, 336–339.Google Scholar
Shebalin, J. V., Matthaeus, W. H., and Montgomery, D. 1983. Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys., 29, 525–547.Google Scholar
Shrira, V., and Nazarenko, S. (eds.) 2013. Advances inWave Turbulence. World Scientific.
Sorriso-Valvo, L., Marino, R., Carbone, V. et al. 2007. Observation of inertial energy cascade in interplanetary space plasma. Phys. Rev. Lett., 99(11), 115001.Google Scholar
Spitzer, L. 1962. Physics of Fully Ionized Gases. Interscience.
Steenbeck, M., Krause, F., and Rädler, K.-H. 1966. A calculation of the mean electromotive force in an electrically conducting fluid in turbulent motion. Z. Natur., 21, 369–376.Google Scholar
Stieglitz, R., and Müller, U. 2001. Experimental demonstration of a homogeneous twoscale dynamo. Phys. Fluids, 13, 561–564.Google Scholar
Strauss, H. R. 1976. Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks. Phys. Fluids, 19, 134–140.Google Scholar
Sweet, P. A. 1958. The neutral point theory of solar flares. Pages 123–134 of Lehnert, B. (ed), Electromagnetic Phenomena in Cosmical Physics. IAU Symposium, vol. 6.
Tarduno, J. A., Cottrell, R. D., Davis, W. J., Nimmo, F., and Bono, R. K. 2015. A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science, 349(6247), 521–524.Google Scholar
Thomson, J. J. 1897. Cathode rays. The Electrician, 39, 104–109.Google Scholar
Turner, L. 1986. Hall effects on magnetic relaxation. IEEE Trans. Plasma Sci., 14, 849–857.Google Scholar
Velikhov, E. P. 1959. Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. J. Exp. Theor. Phys., 9(5), 995–998.Google Scholar
Vermare, L., Gürcan, Ö. D., Hennequin, P. et al. 2011. Wavenumber spectrum of microturbulence in tokamak plasmas. Comptes Rendus Phys., 12, 115–122.
Vlasov, A. A. 1938. On vibrational properties of an electron gas. J. Exp. Theor. Phys., 8, 291–318.Google Scholar
von Kármán, T., and Howarth, L. 1938. On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A, 164, 192–215.Google Scholar
Woltjer, L. 1958. A theorem on force-free magnetic fields. Proc. Nat. Acad. Sci., 44, 489–491.Google Scholar
Yamada, M., Ren, Y., Ji, H. et al. 2006. Experimental study of two-fluid effects on magnetic reconnection in a laboratory plasma with variable collisionality. Phys. Plasmas, 13(5), 052119.Google Scholar
Yamada, M., Kulsrud, R., and Ji, H. 2010. Magnetic reconnection. Rev. Mod. Phys., 82, 603–664.Google Scholar
Yokoyama, N., and Takaoka, M. 2014. Identification of a separation wave number between weak and strong turbulence spectra for a vibrating plate. Phys. Rev. E, 89, 012909.Google Scholar
Zakharov, V. E., L'vov, V. S., and Falkovich, G. 1992. Kolmogorov Spectra of Turbulence 1. Wave Turbulence. Springer Verlag.
Zakharov, V. E. 1965. Weak turbulence in media with a decay spectrum. J. Appl. Mech. Tech. Phys., 6, 22–24.Google Scholar
Zank, G. P., and Matthaeus, W. H. 1992. The equations of reduced magnetohydrodynamics. J. Plasma Phys., 48, 85.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Sébastien Galtier, École Polytechnique, Paris
  • Book: Introduction to Modern Magnetohydrodynamics
  • Online publication: 13 October 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316665961.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Sébastien Galtier, École Polytechnique, Paris
  • Book: Introduction to Modern Magnetohydrodynamics
  • Online publication: 13 October 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316665961.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Sébastien Galtier, École Polytechnique, Paris
  • Book: Introduction to Modern Magnetohydrodynamics
  • Online publication: 13 October 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316665961.021
Available formats
×