Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-20T12:17:35.442Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

Chapter 6 - Gene frequencies and the Hardy–Weinberg principle

Dick Neal
Affiliation:
University of Saskatchewan, Canada
Get access

Summary

Population genetics considers how the frequencies of alternative states of genes in populations are maintained or changed from generation to generation. First, however, it is important that we understand the terms that are used; otherwise, it is easy for beginners to become confused. It is also important to know how the terms will be used in this book, because many of the terms are not used consistently in the wider literature.

Terminology

The following should clarify how the various terms introduced in this chapter are used throughout the book.

phenotype The morphological, physiological, behavioural or biochemical characteristic of an individual, or a group of individuals in a population. Typically, the term refers to a single characteristic, such as body colour or blood group type, but can also refer to more than one characteristic. Almost invariably, there is more than one phenotype for a given characteristic. For example, there may be both short and tall plants in a population.

genotype This is the genetic constitution of an individual, or a group of individuals in a population, which is related by simple Mendelian rules to the phenotype. The theory in this book mainly considers genes with just two different alleles in the population, e.g. A and B, so that there will be just three different genotypes, AA, AB and BB. These will result in three different phenotypes if there is no dominance, but only two if there is dominance. If genotypes AA and AB give rise to the same phenotype, A is considered to be dominant to B, and if AB and BB give the same phenotype, B is considered dominant to A. Theory relating to multiple genes and alleles is considered in Chapter 12.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×