Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-19T21:17:24.453Z Has data issue: false hasContentIssue false

3 - Temperature estimates for stars

Published online by Cambridge University Press:  08 February 2010

Get access

Summary

The black body

If we want to analyse the radiation of stars we must have laboratory light sources with which we can compare the radiation. For instance, if we want to determine the temperature of the stellar gas, we have to know how the radiation of a gas changes with temperature. We also need a light source whose radiation properties do not depend on the kind of material of which it is made, since a priori we do not know what the stars are made of. Such an ideal light source is the so-called black body.

What is a black body? We call something black if it does not reflect any light falling on it. In the absence of any radiation coming from the black body itself, it then looks black because no light falling on it is redirected or scattered into our eyes. If we want to determine temperatures from a comparison with an ideal light source, then this light source must have the same temperature everywhere. This means it must be in thermodynamic equilibrium, which means that it has reached a final state of equilibrium such that nothing will change in time. Such an ideal light source is best realized by a volume of gas inside a well-insulated box with a tiny hole in it. This hole is nearly a perfect black body because any light beam falling into this tiny hole will be reflected back and forth on the walls of this box (see Fig. 3.1) until it is finally absorbed either by the wall or by the gas in the box. The chances of the light getting out of this tiny hole again are extremely small.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×