Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T00:23:32.252Z Has data issue: false hasContentIssue false

8 - Magnetotactic Bacteria and Magnetosomes

Published online by Cambridge University Press:  10 February 2019

Nicholas J. Darton
Affiliation:
Arecor Limited
Adrian Ionescu
Affiliation:
University of Cambridge
Justin Llandro
Affiliation:
Tohoku University, Japan
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellini, S., On a unique behavior of freshwater bacteria. Chin. J. Oceanol. Limnol., 27:1 (2009), 35.CrossRefGoogle Scholar
Bellini, S., Further studies on “magnetosensitive bacteria.Chin. J. Oceanol. Limnol., 27:1 (2009), 612.CrossRefGoogle Scholar
Blakemore, R. P., Magnetotactic bacteria. Science, 190:4212 (1975), 377–9.CrossRefGoogle ScholarPubMed
Bazylinski, D. A. and Frankel, R. B., Magnetosome formation in prokaryotes. Nat. Rev. Microbiol., 2:3 (2004), 217–30.Google Scholar
Gorby, Y. A., Beveridge, T. J. and Blakemore, R. P., Characterization of the bacterial magnetosome membrane. J. Bacteriol., 170:2 (1988), 834–41.Google Scholar
Lefèvre, C. T. and Bazylinski, D. A., Magnetotactic bacteria: Ecology, diversity and evolution. Microbiol. Mol. Biol. Rev., 77:3 (2013), 497526.Google Scholar
Abreu, F., Martins, J. L., Silveira, T. S., et al., “Candidatus Magnetoglobus multicellularis,” a multicellular, magnetotactic prokaryote from a hypersaline environment. Int. J. Syst. Evol. Microbiol., 57:6 (2007), 1318–22.Google Scholar
Amann, R., Peplies, J. and Schüler, D., Diversity and taxonomy of magnetotactic bacteria. In Schüler, D., ed., Magnetoreception and Magnetosomes in Bacteria, Microbiology Monographs (Berlin/Heidelberg: Springer, 2007), pp. 2536.Google Scholar
Flies, C. B., Peplies, J. and Schüler, D., Combined approach for characterization of uncultivated magnetotactic bacteria from various aquatic environments. Appl. Environ. Microbiol., 71:5 (2005), 2723–31.Google Scholar
Lefèvre, C. T., Frankel, R. B., Abreu, F., Lins, U. and Bazylinski, D. A., Culture-independent characterization of a novel, uncultivated magnetotactic member of the Nitrospirae phylum. Environ. Microbiol., 13:2 (2011), 538–49.CrossRefGoogle ScholarPubMed
Lin, W., Li, J. and Pan, Y., Newly isolated but uncultivated magnetotactic bacterium of the phylum Nitrospirae from Beijing, China. Appl. Environ. Microbiol., 78:3 (2012), 668–75.Google Scholar
Lin, W., Jogler, C., Schüler, D. and Pan, Y., Metagenomic analysis reveals unexpected subgenomic diversity of magnetotactic bacteria within the phylum Nitrospirae. Appl. Environ. Microbiol., 77:1 (2011), 323–6.CrossRefGoogle ScholarPubMed
Kolinko, S., Jogler, C., Katzmann, E., Wanner, G., Peplies, J. and Schüler, D., Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. Environ. Microbiol., 14:7 (2011), 1709–21.Google Scholar
Moskowitz, B. M., Bazylinski, D. A., Egli, R., Frankel, R. B. and Edwards, K. J., Magnetic properties of marine magnetotactic bacteria in a seasonally stratified coastal pond (Salt Pond, MA, USA). Geophys. J. Int., 174:1 (2008), 7592.Google Scholar
Lefèvre, C. T., Abreu, F., Schmidt, M. L., et al., Moderately thermophilic magnetotactic bacteria from hot springs in Nevada USA. Appl. Environ. Microbiol., 76:11 (2010), 3740–3.Google Scholar
Nash, C., Mechanisms and evolution of magnetotactic bacteria. Unpublished Ph.D. thesis, California Institute of Technology (2008).Google Scholar
Lefèvre, C. T., Frankel, R. B., Pósfai, M., Prozorov, T. and Bazylinski, D. A., Isolation of obligately alkaliphilic magnetotactic bacteria from extremely alkaline environments. Environ. Microbiol., 13:8 (2011), 2342–50.Google Scholar
Pikuta, E. V., Hoover, R. B., Bej, A. K., et al., Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. Int. J. Syst. Evol. Microbiol., 53:5 (2003), 1327–32.Google Scholar
Bazylinski, D. A. and Williams, T. J., Ecophysiology of magnetotactic bacteria. In Schüler, D., ed., Magnetoreception and Magnetosomes in Bacteria, Microbiology Monographs (Berlin/Heidelberg: Springer, 2007), pp. 3775.CrossRefGoogle Scholar
Sakaguchi, T., Arakaki, A. and Matsunaga, T., Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int. J. Syst. Evol. Microbiol., 52:1 (2002), 215–21.CrossRefGoogle Scholar
Bazylinski, D. A., Dean, A.J., Williams, T. J., Kimble-Long, L., Middleton, S. L. and Dubbels, B. L., Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch. Microbiol., 182:5 (2004), 373–87.Google Scholar
Williams, T. J., Zhang, C. L., Scott, J. H. and Bazylinski, D. A., Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1. Appl. Environ. Microbiol., 72:2 (2006), 1322–29.Google Scholar
Geelhoed, J. S., Kleerebezem, R. Sorokin, D. Y., Stams, A. J. M. and van Loosdrecht, M. C. M., Reduced inorganic sulfur oxidation supports autotrophic and mixotrophic growth of Magnetspirillum strain J10 and Magnetospirillum gryphiswaldense. Environ. Microbiol., 12:4 (2010), 1031–40.Google Scholar
Williams, T. J., Lefèvre, C. T., Zhao, W., Beveridge, T. J. and Bazylinski, D. A., Magnetospira thiophila, gen. nov. sp. nov., a new marine magnetotactic bacterium that represents a novel lineage within the Rhodospirillaceae (Alphaproteobacteria). Int. J. Syst. Evol. Microbiol., 62:10 (2012), 2443–50.Google Scholar
Lefèvre, C. T., Viloria, N., Schmidt, M. L., Pósfai, M., Frankel, R. B. and Bazylinski, D. A., Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria. ISME J., 6:2 (2012), 440–50.Google Scholar
Bazylinski, D. A., Williams, T. J., Lefèvre, C. T., et al., Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov.; Magnetococcales ord. nov.) at the base of the Alphaproteobacteria. Int. J. Syst. Evol. Microbiol., 63:3 (2013), 801–8Google Scholar
Lefèvre, C. T., Menguy, N., Abreu, F., et al., A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria. Science, 334:6063 (2011), 1720–3.Google Scholar
Bazylinski, D. A. and Blakemore, R. P., Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum. Appl. Environ. Microbiol., 46:5 (1983), 1118–24.CrossRefGoogle ScholarPubMed
Li, Y., Katzmann, E., Borg, S. and Schüler, D., The periplasmic nitrate reductase nap is required for anaerobic growth and involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. J. Bacteriol., 194:18 (2012), 4847–56.Google Scholar
Bazylinski, D. A., Williams, T. J., Lefèvre, C. T., et al., Magnetovibrio blakemorei, gen. nov. sp. nov., a new magnetotactic bacterium (Alphaproteobacteria: Rhodospirillaceae) isolated from a salt marsh. Int. J. Syst. Evol. Microbiol., 63:5 (2013), 1824–33.CrossRefGoogle Scholar
Blakemore, R. P., Short, K. A., Bazylinski, D. A., Rosenblatt, C. and Frankel, R. B., Microaerobic conditions are required for magnetite synthesis within Aquaspirillum magnetotacticum. Geomicrobiol. J., 4:1 (1985), 5371.CrossRefGoogle Scholar
Li, Y., Bali, S., Borg, S., Katzmann, E., Ferguson, S. J. and Schüler, D., Cytochrome cd1 nitrite reductase NirS is involved in anaerobic magnetite biomineralization in Magnetospirillum gryphiswaldense and requires NirN for proper d1 heme assembly. J. Bacteriol., 195:18 (2013), 4297–309.Google Scholar
Bazylinski, D. A., Dean, A. J., Schüler, D., Phillips, E. J. P. and Lovley, D. R., N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ. Microbiol., 2:3 (2000), 266–73.CrossRefGoogle ScholarPubMed
Ji, B., Zhang, S-D., Arnoux, P., et al., Comparative genomic analysis provides insights into the evolution and niche adaptation of marine Magnetospira sp. QH-2 strain. Environ. Microbiol., 16:2 (2014), 52544.Google Scholar
Bazylinski, D. A., Heywood, B. R., Mann, S. and Frankel, R. B., Fe3O4 and Fe3S4 in a bacterium. Nature, 366:6452 (1993), 218.Google Scholar
Bazylinski, D. A., Frankel, R. B., Heywood, B. R., et al., Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Appl. Environ. Microbiol., 61:9 (1995), 3232–9.Google Scholar
Lins, U., Keim, C. N., Evans, F. F., Farina, M. and Buseck, P. R., Magnetite (Fe3O4) and greigite (Fe3S4) crystals in multicellular magnetotactic prokaryotes. Geomicrobiol. J., 24:1 (2007), 4350.Google Scholar
Towe, K. M. and Moench, T. T., Electron-optical characterization of bacterial magnetite. Earth Planet. Sci. Lett., 52:1 (1981), 213–20.Google Scholar
Bazylinski, D. A., Garratt-Reed, A.J., Abedi, A. and Frankel, R. B., Copper association with iron sulfide magnetosomes in a magnetotactic bacterium. Arch. Microbiol., 160:1 (1993), 3542.Google Scholar
Frankel, R. B., Bazylinski, D. A. and Schüler, D., Biomineralization of magnetic iron minerals in magnetotactic bacteria. Supramol. Sci., 5:4 (1998), 383–90.Google Scholar
Butler, R. F. and Banerjee, S. K., Theoretical single-domain grain size range in magnetite and titanomagnetite. J. Geophys. Res., 80:29 (1975), 4049–58.Google Scholar
Diaz-Ricci, J. C. and Kirschvink, J. L., Magnetic domain state and coercivity predictions for biogenic greigite (Fe3S4): a comparison of theory with magnetosome observations. J. Geophys. Res., 97:B12 (1992), 17309–15.Google Scholar
Frankel, R. B. and Moskowitz, B. M., Biogenic magnets. In Miller, J. S. and Drillon, M., eds., Magnetism: Molecules to Materials IV (Weinheim: Wiley-VCH, 2003), pp. 205–31.Google Scholar
Frankel, R. B. and Blakemore, R. P., Navigational compass in freshwater magnetotactic bacteria. J. Magn. Magn. Mater. 15–18:3 (1980), 1562–64.Google Scholar
Komeili, A., Li, Z., Newman, D. K. and Jensen, G. J., Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:5758 (2006), 242–5.CrossRefGoogle ScholarPubMed
Katzmann, E., Scheffel, A., Gruska, M., Plitzko, J. M. and Schüler, D., Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense. Mol. Microbiol., 77:1 (2010), 208–24.Google Scholar
Lefèvre, C. T., Pósfai, M., Abreu, F., Lins, U., Frankel, R. B., and Bazylinski, D. A., Morphological features of elongated-anisotropic magnetosome crystals in magnetotactic bacteria of the Nitrospirae phylum and the Deltaproteobacteria class. Earth Planet. Sci. Lett., 312:1-2 (2011), 194200.Google Scholar
Palache, C., Berman, H. and Frondel, C., Dana’s System of Mineralogy. (New York, NY: Wiley, 1944).Google Scholar
Mann, S. and Frankel, R. B., (1989) Magnetite biomineralization in unicellular organisms. In Mann, S., Webb, J. and Williams, R. J. P., eds., Biomineralization: Chemical and Biochemical Perspectives (Weinheim: VCH, 1989), pp. 389426.Google Scholar
Bazylinski, D. A. and Frankel, R. B., Biologically controlled mineralization in prokaryotes. Rev. Mineral., 54:1 (2003), 95114.Google Scholar
Thomas-Keprta, K. L., Bazylinski, D. A., Kirschvink, J. L., et al., Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim. Cosmochim. Acta, 64:23 (2000), 4049–81.Google Scholar
Thomas-Keprta, K. L., Bazylinski, D. A., Kirschvink, J. L., et al., Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. Proc. Natl. Acad. Sci. USA., 98:5 (2001), 2164–69.Google Scholar
Thomas-Keprta, K. L., Clemett, S. J., Bazylinski, D. A., et al., Magnetofossils from ancient Mars: a robust biosignature in the Martian meteorite ALH84001. Appl. Environ. Microbiol., 68:8 (2002), 3663–72.Google Scholar
Jimenez-Lopez, C., Romanek, C. S. and Bazylinski, D. A., Magnetite as a prokaryotic biomarker: a review. J. Geophys. Res. Biogeosci., 115:G2 (2010), G00G03.CrossRefGoogle Scholar
Schüler, D. and Baeuerlein, E., Iron transport and magnetite crystal formation of the magnetic bacterium Magnetospirillum gryphiswaldense. J. de Phys., 7:C1 (1997), 647–50.Google Scholar
Abreu, F., Cantão, M. E., Nicolás, M. F., et al., Common ancestry of iron oxide- and iron-sulfide-based biomineralization in magnetotactic bacteria. ISME J., 5:10 (2011), 1634–40.Google Scholar
Lefèvre, C. T., Trubitsyn, D., Abreu, F., et al., Monophyletic origin of magnetotaxis and the first magnetosomes. Environ. Microbiol., 15:8 (2013), 2267–74.Google Scholar
Schüler, D., Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol. Rev., 32:4 (2008), 654–72.Google Scholar
Gorby, Y. A., Beveridge, T. J. and Blakemore, R. P., Characterization of the bacterial magnetosome membrane. J. Bacteriol., 170:2 (1988), 834–41.Google Scholar
Grünberg, K., Müller, E. C., Otto, A., et al., Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol., 70:2 (2004), 1040–50.CrossRefGoogle ScholarPubMed
Tanaka, M., Okamura, Y., Arakaki, A., Tanaka, T., Takeyama, H. and Matsunaga, T., Origin of magnetosome membrane: proteomic analysis of magnetosome membrane and comparison with cytoplasmic membrane. Proteomics, 6:19 (2006), 5234–47.Google Scholar
Frankel, R. B., Bazylinski, D. A., Johnson, M. S. Taylor, B. L., Magneto-aerotaxis in marine coccoid bacteria. Biophys. J., 73:2 (1997), 9941000.Google Scholar
Frankel, R. B., Williams, T. J. and Bazylinski, D. A., Magneto-aerotaxis. In Schüler, D., ed., Magnetoreception and Magnetosomes in Bacteria, Microbiology Monographs (Berlin/Heidelberg: Springer, 2007), pp. 124.Google Scholar
Blakemore, R. P., Magnetotactic bacteria. Annu. Rev. Microbiol., 36:1 (1982), 217–38.Google Scholar
Blakemore, R. P., Frankel, R. B. and Kalmijn, A. J., South-seeking magnetotactic bacteria in the southern- hemisphere. Nature, 286:5771 (1980), 384–5.Google Scholar
Simmons, S. L., Sievert, S. M., Frankel, R. B., Bazylinski, D. A. and Edwards, K. J., Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Appl. Environ. Microbiol., 70:10 (2004), 6230–9.Google Scholar
Simmons, S. L., Bazylinski, D. A. and Edwards, K. J., South seeking magnetotactic bacteria in the Northern Hemisphere. Science, 311:5759 (2006), 371–4.Google Scholar
Shapiro, O. H., Hatzenpichler, R., Buckley, D. H., Zinder, S. H. and Orphan, V. J., Multicellular photomagnetotactic bacteria. Environ. Microbiol. Rep., 3:2 (2011), 233–8.Google Scholar
Guerin, W. F. and Blakemore, R. P., Redox cycling of iron supports growth and magnetite synthesis by Aquaspirillum magnetotacticum. Appl. Environ. Microbiol., 58:4 (1992), 1102–9.Google Scholar
Guo, F. F., Yang, W., Jiang, W., Geng, S., Peng, T. and Li, J. L., Magnetosomes eliminate intracellular reactive oxygen species in Magnetospirillum gryphiswaldense MSR-1. Environ. Microbiol., 14:7 (2012), 1722–9.Google Scholar
Dobrindt, U., Hochhut, B., Hentschel, U. and Hacker, J., Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol., 2:5 (2004), 414–24.Google Scholar
Blum, G., Ott, M., Lischewski, A., et al., Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect. Immun., 62:2 (1994), 606–14.Google Scholar
Reiter, W-D. and Palm, P., Identification and characterization of a defective SSV1 genome integrated into a tRNA gene in the archaebacterium Sulfolobus sp. B12. Mol. Gen. Genet., 221:1 (1990), 6571.Google Scholar
Reiter, W-D., Palm, P. and Yeats, S., Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res., 17:5 (1989), 1907–14.Google Scholar
Mahillon, J. and Chandler, M., Insertion sequences. Microbiol. Mol. Biol. Rev., 62:3 (1998), 725–74.CrossRefGoogle ScholarPubMed
Mahillon, J., Leonard, C. and Chandler, M., IS elements as constituents of bacterial genomes. Res. Microbiol., 150:9–10 (1999), 675–87.Google Scholar
Ullrich, S., Kube, M., Schübbe, S., Reinhardt, R. and Schüler, D., A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J. Bacteriol., 187:21 (2005), 7176–84.Google Scholar
Matsunaga, T., Okamura, Y., Fukuda, Y., Wahyudi, A. T., Murase, Y. and Takeyama, T., Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res., 12:3 (2005), 157–66.Google Scholar
Jogler, C., Kube, M., Schübbe, S., et al., Comparative analysis of magnetosome gene clusters in magnetotactic bacteria provides further evidence for horizontal gene transfer. Environ. Microbiol., 11:5 (2009), 1267–77.Google Scholar
Nakazawa, H., Arakaki, A., Narita-Yamada, S., et al., Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Res., 19:10 (2009), 1801–8.Google Scholar
Schübbe, S., Williams, T. J., Xie, G., et al., Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl. Environ. Microbiol., 75:14 (2009), 4835–52.Google Scholar
Juhas, M., van der Meer, J. R., Gaillard, M., Harding, R. M., Hood, D. W. and Crook, D. W., Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol. Rev., 33:2 (2009), 376–93.Google Scholar
Jogler, C. and Schüler, D., Genomics, genetics, and cell biology of magnetosome formation. Annu. Rev. Microbiol., 63 (2009), 501–21.Google Scholar
Lefèvre, C. T., Trubitsyn, D., Abreu, F., et al., Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Environ. Microbiol., 15:10 (2013), 2712–35.Google Scholar
Lohße, A., Ullrich, S., Katzmann, E., et al., Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization. PLoS One, 6:10 (2011), e25561.Google Scholar
Ullrich, S. and Schüler, D., Cre-lox-based method for generation of large deletions within the genomic magnetosome island of Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol., 76:8 (2010), 2439–44.Google Scholar
Scheffel, A., Gärdes, A., Grünberg, K., Wanner, G. and Schüler, D., The major magnetosome proteins MamGFDC are not essential for magnetite biomineralization in Magnetospirillum gryphiswaldense but regulate the size of magnetosome crystals. J. Bacteriol., 190:1 (2008), 377–86.Google Scholar
Richter, M., Kube, M., Bazylinski, D. A., et al., Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. J. Bacteriol., 189:13 (2007), 4899–910.Google Scholar
Murat, D., Quinlan, A., Vali, H. and Komeili, A., Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc. Natl. Acad. Sci. USA., 107:12 (2010), 5593–8.Google Scholar
Komeili, A., Vali, H., Beveridge, T. J. and Newman, D. K., Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc. Natl. Acad. Sci. USA., 101:11 (2004), 3839–44.Google Scholar
Zeytuni, N., Ozyamak, E., Ben-Harush, K., et al., Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly. Proc. Natl. Acad. Sci. USA., 108:33 (2011), E480–7.Google Scholar
Zeytuni, N., Baran, D., Davidov, G. and Zarivach, R., Inter-phylum structural conservation of the magnetosome-associated TPR-containing protein, MamA. J. Struct. Biol., 180:3 (2012), 479–87.Google Scholar
Uebe, R., Junge, K., Henn, V., et al., The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. Mol. Microbiol., 82:4 (2011), 818–35.Google Scholar
Beuming, T., Skrabanek, L., Niv, M. Y., Mukherjee, P. and Weinstein, H., PDZBase: a protein-protein interaction database for PDZ-domains. Bioinformatics 21:6 (2005), 827–8.Google Scholar
Quinlan, A., Murat, D., Vali, H. and Komeili, A., The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization. Mol. Microbiol., 80:4 (2011), 1075–87.Google Scholar
Siponen, M. I., Adryanczyk, G., Ginet, N., Arnoux, P. and Pignol, D., Magnetochrome: a c-type cytochrome domain specific to magnetotatic bacteria. Biochem. Soc. Trans., 40:6 (2012), 1319–23.Google Scholar
Komeili, A., Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol. Rev., 36:1 (2012), 232–55.Google Scholar
Matsunaga, T., Nakamura, C., Burgess, J. G. and Sode, K., Gene-transfer in magnetic bacteria: transposon mutagenesis and cloning of genomic DNA fragments required for magnetosome synthesis. J. Bacteriol., 174:9 (1992), 2748–53.Google Scholar
Schultheiss, D. and Schüler, D., Development of a genetic system for Magnetospirillum gryphiswaldense. Arch. Microbiol., 179:2 (2003), 8994.Google Scholar
Schultheiss, D., Kube, M. and Schüler, D., Inactivation of the flagellin gene flaA in Magnetospirillum gryphiswaldense results in nonmagnetotactic mutants lacking flagellar filaments. Appl. Environ. Microbiol., 70:6 (2004), 3624–31.Google Scholar
Okuda, Y., Denda, K. and Fukumori, Y., Cloning and sequencing of a gene encoding a new member of the tetratricopeptide protein family from magnetosomes of Magnetospirillum magnetotacticum. Gene, 171:1 (1996), 99102.Google Scholar
Ponting, C. C. P. and Phillips, C., Rapsyn’s knobs and holes: Eight tetratrico peptide repeats. Biochem. J., 314:3 (1996), 1053–4.Google Scholar
Schüler, D. and Baeuerlein, E., Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J. Bacteriol., 180:1 (1998), 159–62.Google Scholar
Heyen, U. and Schüler, D., Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl. Microbiol. Biotechnol., 61:5–6 (2003), 536–44.Google Scholar
Suzuki, T., Okamura, Y., Calugay, R. J., Takeyama, H. and Matsunaga, T., Global gene expression analysis of iron-inducible genes in Magnetospirillum magneticum AMB-1. J. Bacteriol., 188:6 (2006), 2275–9.Google Scholar
Matsunaga, T. and Arakaki, A., Molecular bioengineering of bacterial magnetic particles for biotechnological applications. In Schüler, D., ed., Magnetoreception and Magnetosomes in Bacteria, Microbiology Monographs (Berlin/Heidelberg: Springer, 2007), pp. 227–54.Google Scholar
Paoletti, L. C. and Blakemore, R. P., Hydroxamate production by Aquaspirillum magnetotacticum. J. Bacteriol., 167:1 (1986), 73–6.Google Scholar
Calugay, R. J., Miyashita, H., Okamura, Y. and Matsunaga, T., Siderophore production by the magnetic bacterium Magnetospirillum magneticum AMB-1. FEMS Microbiol. Lett., 218:2 (2003), 371–5.Google Scholar
Dubbels, B. L., DiSpirito, A. A., Morton, J. D., Semrau, J. D., Neto, J. N. E. and Bazylinski, D. A., Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1. Microbiology, 150:9 (2004), 2931–45.Google Scholar
Neilands, J. B., Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem., 270:45 (1995), 26723–26.Google Scholar
Rong, C., Huang, Y., Zhang, W., Jiang, W., Li, Y. and Li, J., Ferrous iron transport protein B gene (feoB1) plays an accessory role in magnetosome formation in Magnetospirillum gryphiswaldense strain MSR-1. Res. Microbiol., 159:7–8 (2008), 530–6.Google Scholar
Nakamura, C., Burgess, J. G., Sode, K. and Matsunaga, T., An iron-regulated gene, MagA, encoding an iron transport protein of Magnetospirillum sp. strain AMB-1. J. Biol. Chem., 270:47 (1995), 28392–6.Google Scholar
Uebe, R., Henn, V. and Schüler, D., The MagA protein of Magnetospirilla is not involved in bacterial magnetite biomineralization. J. Bacteriol., 194:5 (2012), 1018–23.Google Scholar
Paulsen, I. T., Park, J. H., Choi, P. S. Jr., and Saier, H. H., A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria. FEMS Microbiol. Lett., 156:1 (1997), 18.CrossRefGoogle ScholarPubMed
Grass, G., Otto, M., Fricke, B., et al., FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch. Microbiol., 183:1 (2005), 918.Google Scholar
Haney, C. J., Grass, G., Franke, S. and Rensing, C., New developments in the understanding of the cation diffusion facilitator family. J. Ind. Microbiol. Biot., 32:6 (2005), 215–26.Google Scholar
Grünberg, K., Wawer, C., Tebo, B. M. and Schüler, D., A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl. Environ. Microbiol., 67:10 (2001), 4573–82.Google Scholar
Uebe, R., Voigt, B., Schweder, T., et al., Deletion of a fur-like gene affects iron homeostasis and magnetosome formation in Magnetospirillum gryphiswaldense. J. Bacteriol., 192:16 (2010), 4192–204.Google Scholar
Qi, L., Li, J., Zhang, W., et al., Fur in Magnetospirillum gryphiswaldense influences magnetosomes formation and directly regulates the genes involved in iron and oxygen metabolism. PLoS One, 7:1 (2012), e29572.Google ScholarPubMed
Frankel, R. B., Blakemore, R. P. and Wolfe, R., Magnetite in freshwater magnetotactic bacteria. Science, 203:4387 (1979), 1355–6.Google Scholar
Frankel, R. B., Papaefthymiou, G. C., Blakemore, R. P. and O’Brien, W., Fe3O4 precipitation in magnetotactic bacteria. Biochim. Biophys. Acta, 763:2 (1983), 147–59.Google Scholar
Faivre, D., Bottger, L. H., Matzanke, B. F. and Schüler, D., Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(II) species. Angew. Chem. Int. Ed., 46:44 (2007), 8495–9.Google Scholar
Theil, E., Ferritin: Structure, gene-regulation, and cellular function in animals, plants, and microorganisms. Annu. Rev. Biochem., 56 (1987), 289315.Google Scholar
Baumgartner, J., Morin, G., Menguy, N., et al., Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates. Proc. Natl. Acad. Sci. USA., 110:37 (2013), 14883–8.Google Scholar
Fdez-Gubieda, M. L., Muela, A., Alonso, J., et al., Magnetite biomineralization in Magnetospirillum gryphiswaldense: time-resolved magnetic and structural studies. ACS Nano, 7:4 (2013), 3297–305Google Scholar
Siponen, M. I., Legrand, P., Widdrat, M., et al., Structural insight into magnetochrome-mediated magnetite biomineralization. Nature, 502:7473 (2013), 681–4Google Scholar
Errington, J., Daniel, R. A. and Scheffers, D. J., Cytokinesis in bacteria. Microbiol. Mol. Biol. Rev., 67:1 (2003), 5265.Google Scholar
Ding, J., Li, J., Liu, J., et al., Deletion of the ftsZ-like gene results in the production of superparamagnetic magnetite magnetosomes in Magnetospirillum gryphiswaldense. J. Bacteriol., 192:4 (2010), 1097–105.Google Scholar
Arakaki, A., Webb, J. and Matsunaga, T., A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J. Biol. Chem., 278:10 (2003), 8745–50.Google Scholar
Fukuda, Y., Okamura, Y., Takeyama, H. and Matsunaga, T., Dynamic analysis of a genomic island in Magnetospirillum sp. strain AMB-1 reveals how magnetosome synthesis developed. FEBS Lett., 580:3 (2006), 801–12.Google Scholar
Taoka, A., Asada, R., Sasaki, H., Anzawa, K, Wu, L-F. and Fukumori, Y., Spatial localizations of Mam22 and Mam12 in the magnetosomes of Magnetospirillum magnetotacticum. J. Bacteriol., 188:11 (2006), 3805–12.Google Scholar
Yang, J., Li, S., Huang, X., et al., MamX encoded by the mamXY operon is involved in control of magnetosome maturation in Magnetospirillum gryphiswaldense MSR-1. BMC Microbiol., 13 (2013), 203.Google Scholar
Prozorov, T., Mallapragada, S. K., Narasimhan, B., et al., Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv. Funct. Mater., 17:6 (2007), 951–7.Google Scholar
Raschdorf, O., Müller, F. D., Pósfai, M., Plitzko, J. M. and Schüler, D., The magnetosome proteins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. Mol. Microbiol., 89:5 (2013), 872–86.Google Scholar
Li, X., Wang, Q. and Xue, Y., On the change in bacterial growth and magnetosome formation for Magnetospirillum sp. strain AMB-1 under different concentrations of reducing agents. J. Nanosci. Nanotechnol., 13:2 (2013), 1392–8.Google Scholar
Matsunaga, T., Tadokoro, F. and Nakamura, N., Mass culture of magnetic bacteria and their application to flow type immunoassays. IEEE T. Magn. 26:5 (1990), 1557–59.Google Scholar
Matsunaga, T., Tsujimura, N. and Kamiya, S., Enhancement of magnetic particle production by nitrate and succinate fed-batch culture of Magnetospirillum sp. AMB-1. Biotechnol. Tech., 10:7 (1996), 495500.Google Scholar
Matsunaga, T., Togo, H., Kikuchi, T. and Tanaka, T., Production of luciferase-magnetic particle complex by recombinant Magnetospirillum sp. AMB-1. Biotechnol. Bioeng., 70:6 (2000), 704–9.Google Scholar
Yang, C. D., Takeyama, H., Tanaka, T., Hasegawa, A. and Matsunaga, T., Synthesis of bacterial magnetic particles during cell cycle of Magnetospirillum magneticum AMB-1. Appl. Biochem. Biotechnol., 91–93 (2001), 155–60.Google Scholar
Yang, C. D., Takeyama, H., Tanaka, T. and Matsunaga, T., Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of luciferase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1. Enzyme Microb. Technol., 29:1 (2001), 13–9.Google Scholar
Lang, C. and Schüler, D., Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes. J. Phys. Condens. Matter, 18:38 (2006), S2815–28.Google Scholar
Sun, J-B., Zhao, F., Tang, T., et al., High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air. Appl. Microbiol. Biotechnol., 79:3 (2008), 389–97.Google Scholar
Liu, Y., Li, G. R., Guo, F. F., Jiang, W., Li, Y. and Li, L. J., Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. Microb. Cell. Fact., 9 (2010), 99.Google Scholar
Alphandéry, E., Amor, M., Guyot, F. and Chebbi, I., The effect of iron-chelating agents on Magnetospirillum magneticum strain AMB-1: stimulated growth and magnetosome production and improved magnetosome heating properties. Appl. Microbiol. Biotechnol., 96:3 (2012), 663–70.Google Scholar
Silva, K. T., Leão, P.E., Abreu, F., et al., Optimized magnetosome production and growth by the magnetotactic vibrio Magnetovibrio blakemorei strain MV-1 using statistical experimental design. Appl. Environ. Microbiol., 79:8 (2013), 2823–27.Google Scholar
Kolinko, I., Lohße, A., Borg, S., et al., Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat. Nanotech., 9:3 (2014), 193–7.Google Scholar
Bazylinski, D. A., Garratt-Reed, A. J. and Frankel, R. B., Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microsc. Res. Tech., 27:5 (1994), 389401.Google Scholar
Guo, F., Liu, Y., Chen, Y., Tang, T., Jiang, W., Li, Y. and Li, J., A novel rapid and continuous procedure for large-scale purification of magnetosomes from Magnetospirillum gryphiswaldense. Appl. Microbiol. Biotechnol., 90:4 (2011), 1277–83.Google Scholar
Cameotra, S. S. and Dhanjal, S., Environmental nanotechnology: nanoparticles for bioremediation of toxic pollutants. In Fulekar, M. H., ed., Bioremediation Technology: Recent Advances (Dordrecht: Springer, 2010), pp. 348–74.Google Scholar
Musarrat, J., Dwivedi, S., Singh, B. R., Saquib, Q. and Al-Khedhairy, A. A., Microbially synthesized nanoparticles: Scope and applications. In Ahmad, I., Ahmad, F. and Pichtel, J., eds., Microbes and Microbial Technology: Agricultural and Environmental Applications (New York, NY: Springer, 2011), pp. 101–26.Google Scholar
Ramanujan, R. V., Magnetic particles for biomedical applications. In Narayan, R., ed., Biomedical Materials (New York, NY: Springer, 2009), pp. 477–91.Google Scholar
Trahms, L., Biomedical applications of magnetic nanoparticles. Lect. Notes. Phys., 763 (2009), 327–58.Google Scholar
Matsunaga, T., Hashimoto, K., Nakamura, N., Nakamura, K. and Hashimoto, S., Phagocytosis of bacterial magnetite by leukocytes. Appl. Microbiol. Biotechnol., 31:4 (1989), 401–5.Google Scholar
Zhou, W., Zhang, Y., Ding, X., et al., Magnetotactic bacteria: promising biosorbents for heavy metals. Appl. Microbiol. Biotechnol., 95:5 (2012), 1097–104.Google Scholar
Bahaj, A. S., James, P. A. B., Ellwood, D. C. and Watson, J. H. P., Characterization and growth of magnetotactic bacteria: implications of clean up of environmental pollution. J. Appl. Phys. 73:10 (1993), 5394–6.Google Scholar
Bahaj, A. S., Croudace, I. W., James, P. A. B., Moeschler, F. D. and Warwick, P. E., Continuous radionuclide recovery from wastewater using magnetotactic bacteria. J. Magn. Magn. Mater. 184:2 (1998), 241–4.Google Scholar
Bahaj, A. S., James, P. A. B. and Moeschler, F. D., Low magnetic-field separation system for metal-loaded magnetotactic bacteria. J. Magn. Magn. Mater. 177:2 (1998), 1453–4.Google Scholar
Bahaj, A. S., James, P. A. B. and Moeschler, F. D., Wastewater treatment by bio-magnetic separation: A comparison of iron oxide and iron sulphide biomass recovery. Water. Sci. Technol., 38:6 (1998), 311–7.Google Scholar
Arakaki, A., Takeyama, H., Tanaka, T. and Matsunaga, T., Cadmium recovery by a sulfate-reducing magnetotactic bacterium, Desulfovibrio magneticus RS-1, using magnetic separation. Appl. Biochem. Biotechnol., 98 (2002), 833–40.Google Scholar
Funaki, M., Sakai, H. and Matsunaga, T., Identification of the magnetic poles on strong magnetic grains from meteorites using magnetotactic bacteria. J. Geomagn. Geoelectr., 41:1 (1989), 7787.Google Scholar
Funaki, M., Sakai, H., Matsunaga, T. and Hirose, S., The S-pole distribution on magnetic grains in pyroxenite determined by magnetotactic bacteria. Phys. Earth Planet. Inter., 70:3–4 (1992), 253–60.Google Scholar
Harasko, G., Pfutzner, H., Rapp, E., Futschik, K. and Schüler, D., Determination of the concentration of magnetotactic bacteria by means of susceptibility measurements. Jpn. J. Appl. Phys., 32:1 (1993), 252–60.Google Scholar
Harasko, G., Pfutzner, H. and Futschik, K., Domain analysis by means of magnetotactic bacteria. IEEE T. Magn., 31:2 (1995), 938–49.Google Scholar
Martel, S., Bacterial microsystems and microrobots. Biomed. Microdevices, 14:6 (2012), 1033–45.Google Scholar
Lefèvre, C. T., Bernadac, A, Yu-Zhang, K., Pradel, N. andWu, F., Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean Sea. Environ. Microbiol., 11:17 (2009), 1646–57.Google Scholar
Martel, S., Nanorobots for microfactories to operations in the human body and robots propelled by bacteria. FU Aut. Cont. Rob., 7:1 (2008), 18.Google Scholar
Ma, Q., Chen, C., Wei, S., Chen, C., Wu, L-F. and Song, T., Construction and operation of a microrobot based on magnetotactic bacteria in a microfluidic chip. Biomicrofluidics, 6:2 (2012), 24107–12.Google Scholar
Felfoul, O. and Martel, S., Assessment of navigation control strategy for magnetotactic bacteria in microchannel: toward targeting solid tumors. Biomed. Microdevices, 15:6 (2013), 1015–24.Google Scholar
Zhao, G., Sanchez, S., Schmidt, O. G. and Pumera, M., Micromotors with built-in compasses. Chem. Commun., 48:81 (2012), 10090–2.Google Scholar
Kuhara, M., Takeyama, H., Tanaka, T. and Matsunaga, T., Magnetic cell separation using antibody binding with protein A expressed on bacterial magnetic particles. Anal. Chem., 76:21 (2004), 6207–13.Google Scholar
Matsunaga, T. and Kamiya, S., Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization. Appl. Microbiol. Biotechnol., 26:4 (1987), 328–32.Google Scholar
Nakamura, N. and Matsunaga, T., Highly sensitive detection of allergen using bacterial magnetic particles. Anal. Chim. Acta, 281:3 (1993), 585–9.Google Scholar
Matsunaga, T., Applications of bacterial magnets. Trends Biotechnol., 9:1 (1991), 91–5.Google Scholar
Nakamura, N., Hashimoto, K. and Matsunaga, T., Immunoassay method for the determination of immunoglobulin G using bacterial magnetic particles. Anal. Chem., 63:3 (1991), 268–72.Google Scholar
Nakamura, N., Burgess, J. G., Yagiuda, K., Kudo, S., Sakaguchi, T. and Matsunaga, T., Detection and removal of Escherichia coli using fluorescein isothiocyanate conjugated monoclonal antibody immobilized on bacterial magnetic particles. Anal. Chem., 65:15 (1993), 2036–39.Google Scholar
Pečová, M., Šebela, M., Marková, Z., et al., Thermostable trypsin conjugates immobilized to biogenic magnetite show a high operational stability and remarkable reusability for protein digestion. Nanotechnology, 24:12 (2013), 125102.Google Scholar
Nakayama, H., Arakaki, A., Maruyama, K., Takeyama, H. and Matsunaga, T., Single-nucleotide polymorphism analysis using fluorescence resonance energy transfer between DNA-labeling fluorophore, fluorescein isothiocyanate, and DNA intercalator, POPO-3, on bacterial magnetic particles. Biotechnol. Bioeng., 84:1 (2003), 96102.Google Scholar
Ota, H., Takeyama, H., Nakayama, H., Katoh, T. and Matsunaga, T., SNP detection in transforming growth factor-beta 1 gene using bacterial magnetic particles. Biosens. Bioelectron., 18:5–6 (2003), 683–7.Google Scholar
Tanaka, T., Maruyama, K., Yoda, K., et al., Development and evaluation of an automated workstation for single nucleotide polymorphism discrimination using bacterial magnetic particles. Biosens. Bioelectron., 19:4 (2003), 325–30.Google Scholar
Yoshino, T., Tanaka, T., Takeyama, H. and Matsunaga, T., Single nucleotide polymorphism genotyping of aldehyde dehydrogenase 2 gene using a single bacterial magnetic particle. Biosens. Bioelectron., 18:5–6 (2003), 661–6.Google Scholar
Maruyama, K., Takeyama, H., Nemoto, E., Tanaka, T., Yoda, K. and Matsunaga, T., Single nucleotide polymorphism detection in aldehyde dehydrogenase 2 (ALDH2) gene using bacterial magnetic particles based on dissociation curve analysis. Biotechnol. Bioeng., 87:6 (2004), 687–94.Google Scholar
Wu, L., Gao, B., Zhang, F., Sun, X., Zhang, Y. and Li, Z., A novel electrochemical immunosensor based on magnetosomes for detection of staphylococcal enterotoxin B in milk. Talara, 106 (2013), 360–6.Google Scholar
Sun, X., Wu, L., Ji, J., et al., Longitudinal surface plasmon resonance assay enhanced by magnetosomes for simultaneous detection of Pefloxacin and Microcystin-LR in seafoods. Biosens. Bioelectron., 47 (2013), 318–23.Google Scholar
Matsunaga, T. and Takeyama, H., Biomagnetic nanoparticle formation and application. Supramol. Sci., 5:3–4 (1998), 391–4.Google Scholar
Matsunaga, T., Arakaki, A. and Takahoko, M., Preparation of luciferase-bacterial magnetic particle complex by artificial integration of MagA-luciferase fusion protein into the bacterial magnetic particle membrane. Biotechnol. Bioeng., 77:6 (2002), 614–8.Google Scholar
Yoshino, T. and Matsunaga, T., Development of efficient expression system for protein display on bacterial magnetic particles. Biochem. Biophys. Res. Commun., 338:4 (2005), 1678–81.Google Scholar
Yoshino, T. and Matsunaga, T., Efficient and stable display of functional proteins on bacterial magnetic particles using Mms13 as a novel anchor molecule. Appl. Environ. Microbiol., 72:1 (2006), 465–71.Google Scholar
Kanetsuki, Y., Tanaka, M., Tanaka, T., Matsunaga, T. and Yoshino, T., Effective expression of human proteins on bacterial magnetic particles in an anchor gene deletion mutant of Magnetospirillum magneticum AMB-1. Biochem. Biophys. Res. Commun., 426:1 (2012), 711.Google Scholar
Kanetsuki, Y., Tanaka, T., Matsunaga, T. and Yoshino, T., Enhanced heterologous protein display on bacterial magnetic particles using a lon protease gene deletion mutant in Magnetospirillum magneticum AMB-1. J. Biosci. Bioeng., 116:1 (2013), 6570.Google Scholar
Sugamata, Y., Uchiyama, R., Honda, T., Tanaka, T., Matsunaga, T. and Yoshino, T., Functional expression of thyroid-stimulating hormone receptor on nano-sized bacterial magnetic particles in Magnetospirillum magneticum AMB-1. Int. J. Mol. Sci., 14:7 (2013), 14426–38.Google Scholar
Ohuchi, S. and Schüler, D., In vivo display of a multisubunit enzyme complex on biogenic magnetic nanoparticles. Appl. Environ. Microbiol., 75:24 (2009), 7734–8.Google Scholar
Ginet, N., Pardoux, R., Adryanczyk, G., Garcia, D., Brutesco, C. and Pignol, D., Single-step production of a recyclable nanobiocatalyst for organophosphate pesticides biodegradation using functionalized bacterial magnetosomes. PLoS One, 6:6 (2011), e21442.Google Scholar
Yoza, B., Matsumoto, M. and Matsunaga, T., DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound. J. Biotech. 94:3 (2002), 217–24.Google Scholar
Yoza, B., Arakaki, A., Maruyama, K., Takeyama, H. and Matsunaga, T., Fully automated DNA extraction from blood using magnetic particles modified with a hyperbranched polyamidoamine dendrimer. J. Biosci. Bioeng., 95:1 (2003), 21–6.Google Scholar
Yoza, B., Arakaki, A. and Matsunaga, T., DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer. J. Biotech., 101:3 (2003), 219–28.Google Scholar
Sode, K., Kudo, S., Sakaguchi, T., Nakamura, N. and Matsunaga, T., Application of bacterial magnetic particles for highly selective messenger-RNA recovery-system. Biotechnol. Tech., 7:9 (1993), 688–94.Google Scholar
Lee, J-H., Huh, Y-M., Jun, Y., et al., Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med., 13:1 (2007), 95–9.Google Scholar
McAteer, M. A., Sibson, N. R., von zur Muhlen, C., et al., In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat. Med., 13:10 (2007), 1253–58.Google Scholar
Herborn, C., Papanikolaou, N., Reszka, R., Grünberg, K., Schüler, D. and Debatin, J. F., Magnetosomen als biologisches modell der eisenbindung: messung der relaxivitat in der MRT. Fortschr. Rontg. Neuen., 175:6 (2003), 830–4.Google Scholar
Benoit, M., Mayer, D., Barak, Y., et al., Visualizing implanted tumors in mice with magnetic resonance imaging using magnetotactic bacteria. Clin. Cancer Res., 15:16 (2009), 5170–7.Google Scholar
Goldhawk, D. E., Rohani, R., Sengupta, A., Gelman, N. and Prato, F. S., Using the magnetosome to model effective gene-based contrast for magnetic resonance imaging. WIREs Nanomed. Nanobiotechnol., 4:4 (2012), 378–88.Google Scholar
Pollithy, A., Romer, T., Lang, C., et al., Magnetosome expression of functional camelid antibody fragments (nanobodies) in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol., 77:17 (2011), 6165–71.Google Scholar
Chertok, B., David, A. E., Huang, Y. and Yang, V. C., Glioma selectivity of magnetically targeted nanoparticles: a role of abnormal tumor hydrodynamics. J. Control. Release, 122:3 (2007), 315–23.Google Scholar
Zhao, M., Liang, C., Li, A., et al., Magnetic paclitaxel nanoparticles inhibit glioma growth and improve the survival of rats bearing glioma xenografts. Anticancer Res., 30:6 (2010), 2217–23.Google Scholar
Guo, L., Huang, J. and Zheng, L-M., Bifunctional bacterial magnetic nanoparticles for tumor targeting. Nanoscale, 4:3 (2012), 879–84.Google Scholar
Tang, Y-S., Wang, D., Zhou, C., et al., Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Ther., 19:12 (2012), 1187–95.Google Scholar
Sun, J-B., Duan, J-H., Dai, S-L., et al., In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: the magnetic bionanoparticles as drug carriers. Cancer Lett., 258:1 (2007), 109–17.Google Scholar
Deng, Q., Liu, Y., Wang, S., et al., Construction of a novel magnetic targeting anti-tumor drug delivery system: cytosine arabinoside-loaded bacterial magnetosome. Materials, 6:9 (2013), 3755–63.Google Scholar
Duguet, E., Vasseur, S., Mornet, S. and Devoisselle, J-M., Magnetic nanoparticles and their applications in medicine. Nanomedicine, 1:2 (2006), 157–68.Google Scholar
Gloeckl, G., Hergt, R., Zeisberger, M., Dutz, S., Nagel, S. and Weitschies, W., The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J. Phys. Condens. Matter, 18:38 (2006), S2935–49.Google Scholar
Dutz, S., Andrä, W., Hergt, R., et al., Biomedical heating applications of magnetic iron oxide nanoparticles. In Kim, S. I. and Suh, T. S., eds., World Congress on Medical Physics and Biomedical Engineering 2006, Vol 14, Parts 1–6 (Berlin: Springer-Verlag, 2007), pp. 271–4.Google Scholar
Dutz, S., Hergt, R., Muerbe, J., et al., Hysteresis losses of magnetic nanoparticle powders in the single domain size range. J. Magn. Magn. Mater., 308:2 (2007), 305–12.Google Scholar
Hergt, R., Andrä, W., d’Ambly, G. C., et al., Physical limits of hyperthermia using magnetite fine particles. IEEE T. Magn., 34:5 (1998), 3745–54.Google Scholar
Hilger, I., Andrä, W., Hergt, R., Hiergeist, R., Schubert, H. and Kaiser, W. A., Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice. Radiology, 218:2 (2001), 570–5.Google Scholar
Hilger, I., Hergt, R. and Kaiser, W. A., Use of magnetic nanoparticle heating in the treatment of breast cancer. IEE Proc. Nanobiotechnol., 152:1 (2005), 33–9.Google Scholar
Hilger, I. and Kaiser, W. A., Magnetic thermoablation. Eur. Radiol., 16 (2006), E47.Google Scholar
Ito, A., Honda, H. and Kobayashi, T., Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of ‘heat-controlled necrosis’ with heat shock protein expression. Cancer. Immunol. Immu., 55:3 (2006), 320–8.Google Scholar
Ciofani, G., Riggio, C., Raffa, V., Menciassi, A. and Cuschieri, A., A bi-modal approach against cancer: magnetic alginate nanoparticles for combined chemotherapy and hyperthermia. Med. Hypotheses, 73:1 (2009), 80–2.Google Scholar
Hergt, R., Hiergeist, R., Zeisberger, M., et al., Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J. Magn. Magn. Mater., 293:1 (2005), 80–6.Google Scholar
Hergt, R., Dutz, S., Müller, R. and Zeisberger, M., Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy. J. Phys. Condens. Matter, 18:38 (2006), S2919–34.Google Scholar
Liu, R., Liu, J., Tong, J., et al., Heating effect and biocompatibility of bacterial magnetosomes as potential materials used in magnetic fluid hyperthermia. Prog. Nat. Sci., 22:1 (2012), 31–9.Google Scholar
Alphandéry, E., Chebbi, I., Guyot, F. and Durand-Dubief, M., Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: a review. Int. J. Hyperth., 29:8 (2013), 801–9.Google Scholar
Alphandéry, E., Faure, S., Raison, L., et al., Heat production by bacterial magnetosomes exposed to an oscillating magnetic field. J. Phys. Chem. C, 115:1 (2011), 1822.Google Scholar
Alphandéry, E., Faure, S., Seksek, O., Guyot, F. and Chebbi, I., Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano, 5:8 (2011), 6279–96.Google Scholar
Alphandéry, E., Guyot, F. and Chebbi, I., Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. Int. J. Pharm., 434:1–2 (2012), 444–52.Google Scholar
Martinez-Boubeta, C., Simeonidis, K., Makridis, A., et al., Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep., 3 (2013), 1652.Google Scholar
Chang, Y-S., Savitha, S., Sadhasivam, S., Hsu, C-K. and Lin, F-H., Fabrication, characterization, and application of greigite nanoparticles for cancer hyperthermia. J. Colloid. Interface. Sci., 363:1 (2011), 314–9.Google Scholar
Xiang, L., Wei, J., Jianbo, S., Guili, W., Feng, G. and Ying, L., Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro. Lett. Appl. Microbiol., 45:1 (2007), 7581.Google Scholar
Tang, T., Zhang, L., Gao, R., Dai, Y., Meng, F. and Li, Y., Fluorescence imaging and targeted distribution of bacterial magnetic particles in nude mice. Appl. Microbiol. Biotechnol., 94:2 (2012), 495503.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×