Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T10:39:07.743Z Has data issue: false hasContentIssue false

23 - Aqueous alteration on Mars

from Part V - Synthesis

Published online by Cambridge University Press:  10 December 2009

D. W. Ming
Affiliation:
NASA/JSC Code KX, Building 31, Room 120 2101 NASA Road 1 Houston, TX 77058, USA
R. V. Morris
Affiliation:
NASA/JSC Code KR, Building 31, Room 120 2101 NASA Road 1 Houston, TX 77058, USA
B. C. Clark
Affiliation:
Planetary Sciences Laboratory Lockheed Martin Aerospce MS 8001, PO Box 179 Denver, CO 80201, USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

Aqueous alteration is the change in composition of a rock, produced in response to interactions with H2O-bearing ices, liquids, and vapors by chemical weathering. A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Mineralogical indicators for aqueous alteration include goethite (lander), jarosite (lander), kieserite (orbiter), gypsum (orbiter) and other Fe-, Mg-, and Ca-sulfates (landers), halides (meteorites, lander), phyllosilicates (orbiter, meteorites), hematite and nanophase iron oxides (telescopic, orbiter, lander), and Fe-, Mg-, and Ca-carbonates (meteorites). Geochemical indicators (landers only) for aqueous alteration include Mg-, Ca-, and Fe-sulfates, halides, and secondary aluminosilicates such as smectite. Based upon these indicators, several styles of aqueous alteration have been suggested on Mars. Acid-sulfate weathering (e.g., formation of jarosite, gypsum, hematite, and goethite) may occur during (1) the oxidative weathering of ultramafic igneous rocks containing sulfides, (2) sulfuric acid weathering of basaltic materials, and (3) acid-fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials. Near-neutral or alkaline alteration occurs when solutions with pH near or above 7 move through basaltic materials and form phases such as phyllosilicates and carbonates. Very low water:rock ratios appear to have been prominent at most of the sites visited by landed missions because there is very little alteration (leaching) of the original basaltic composition (i.e., the alteration is isochemical or in a closed hydrologic system).

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 519 - 540
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C. C., Gooding, J. L., and Keil, K., Hydrothermally altered impact melt rock and breccia: contributions to the soil of Mars, J. Geophys. Res. 87, 10083–101, 1982.CrossRefGoogle Scholar
Arvidson, R. E., Squyres, S. W., Anderson, R. C., et al., Overview of the Spirit Mars Exploration Rover mission to Gusev crater: landing site to the Methuselah Outcrop in the Columbia Hills, J. Geophys. Res. 111, E02S01, doi:10.1029/2005JE002499, 22, 2006.CrossRefGoogle Scholar
Baird, A. K. and Clark, B. C., Did komatiitic lavas erode channels on Mars?, Nature 311, 18–19, 1984.CrossRefGoogle Scholar
Bandfield, J. L., Glotch, T. D., and Christensen, P. R., Spectroscopic identification of carbonate minerals in the Martian dust, Science 301, 1084–7, 2003.CrossRefGoogle ScholarPubMed
Banin, A. and Margulies, L., Simulation of Viking biology experiment suggests smectites not palagonite, as Martian soil analogs, Nature 305, 523–6, 1983.CrossRefGoogle Scholar
Banin, A., Han, F. X., Kan, I., and Cicelsky, A., Acidic volatiles and the Mars soil, J. Geophys. Res. 102, 13341–56, 1997.CrossRefGoogle Scholar
Bell III, J. F. and Crisp, D., Groundbased imaging spectroscopy of Mars in the near-infrared: preliminary results, Icarus 104, 2–19, 1993.CrossRefGoogle Scholar
Bell III, J. F., McCord, T. B., and Owensby, P. D., Observational evidence of crystalline iron oxides on Mars, J. Geophys. Res. 95, 14447–61, 1990.CrossRefGoogle Scholar
Bibring, J.-P., Langevin, Y., Gendrin, A., et al., Mars surface diversity as revealed by the OMEGA/Mars Express observations, Science 307, 1576–81, 2005.CrossRefGoogle ScholarPubMed
Bibring, J. -P., Langevin, Y., Mustard, J. F., et al., Global mineralogy and aqueous Mars history derived from OMEGA/Mars Express data, Science 312, 400–4, 2006.CrossRefGoogle Scholar
Bigham, J. M. and D. K. Nordstrom, Iron and aluminum hydroxysulfates from acid sulfate waters. In Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance, (ed. C. N. Alpers, J. L. Jambor, and D. K. Nordstom), Rev. Mineral. Geochem., Mineral. Soc. Amer. & Geochem. Soc. 40, 351–403, 2000.
Bigham, J. M., Schwertman, U., Carlson, L., and Murad, E., A poorly crystalline oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters, Geochim. Cosmochim. Acta 54, 2743–58, 1990.CrossRefGoogle Scholar
Bish, D. L. and J. W. Carey, Thermal behavior of natural zeolites. In Natural Zeolites: Occurrence Properties, Applications (ed. D. L. Bish and D. W. Ming), Rev. Min. Geochem. 45, 403–52, 2001.
Bish, D. L., Carey, J. W., Vaniman, D. T., and Chipera, S. J., Stability of hydrous minerals on the martian surface, Icarus 164, 96–103, 2003.CrossRefGoogle Scholar
Bishop, J. L. and E. Murad, Schwertmannite on Mars? Spectroscopic analyses of schwertmannite, its relationship to other ferric minerals, and its possible presence in the surface material on Mars. In Mineral Spectroscopy: A Tribute to Roger G. Burns (ed. Dyar, M. D., McCammon, C., and Schaefer, M. W.), Houston: The Geochemical Society, Special Publication No. 5, 337–58, 1996.Google Scholar
Blaney, D. L., The Mars Science Laboratory (MSL) Mission, Workshop on Martian Sulfates as Recorders of Atmospheric-Fluid-Rock Interactions, LPI Contribution No. 1331, Houston, Texas: Lunar and Planetary Institute, Abstract #7034, 2006.Google Scholar
Boynton, W. V., Feldman, W. C., Squyres, S. W., et al., Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits, Science 297, 81–5, 2002.CrossRefGoogle ScholarPubMed
Brearley, A. J., Magnetite in ALH84001: product of decomposition of ferroan carbonate, Lunar Planet. Sci. XXIX, Houston: Lunar and Planetary Institute, Abstract #1451 (CD-ROM), 1998.Google Scholar
Brearley, A. J., Hydrous phases in ALH84001: further evidence for preterrestrial alteration and a shock-induced thermal overprint, Lunar Planet. Sci. XXXI, Houston: Lunar and Planetary Institute, Abstract #1203 (CD-ROM), 2000.Google Scholar
Bridges, J. C. and Grady, M. M., A halite-siderite-anhydrite-chlorapatite assembalage in Nakhla: mineralogical evidence for evaporates on Mars, Meteorit. Planet. Sci. 34, 407–16, 1999.CrossRefGoogle Scholar
Bridges, J. C. and Grady, M. M., Evaporite mineral assemblages in the Nakhlite (Martian) meteorites. Earth Planet. Sci. Lett. 176, 267–79, 2000.CrossRefGoogle Scholar
Bridges, J. C., Catling, D. C., Saxton, J. M., et al., Alteration assemblages in Martian meteorites: implications for near-surface processes, Space Sci. Rev. 96, 365–92, 2001.CrossRefGoogle Scholar
Brown, G. and G. W. Brindley, X-ray diffraction procedures for clay mineral identification. In Crystal Structures of Clay minerals and Their X-ray Identification, (ed. Brindley, G. W. and Brown, G.), Mineralogical Society Monograph No. 5, Washington, DC: Mineralogical Society, pp. 305–60, 1980.CrossRefGoogle Scholar
Brückner, J., Dreibus, G., Lugmair, G. W., et al., Chemical composition of the martian surface as derived from Pathfinder, Viking, and martian meteorite data, Lunar Planet. Sci. XXX, Houston: Lunar and Planetary Institues, Abstract #1250, 1999.Google Scholar
Buckby, T., Black, S., Coleman, M. L., and Hodson, M. E., Fe-sulfate-rich evaporative mineral precipitates from the Rio Tinto, southwest Spain, Mineral. Mag. 67, 263–78, 2003.CrossRefGoogle Scholar
Burns, R. G., Gossans on Mars, Proc. Lunar Planet. Sci. XVIII, 713–21, 1988.Google Scholar
Burns, R. G. and Fisher, D. S., Iron-sulfur mineralogy of Mars: magmatic evolution and chemical weathering products, J. Geophys. Res. 95, 14169–73, 1990.CrossRefGoogle Scholar
Calvin, W. M., Variation of the 3-µm absorption feature on Mars: observations over eastern Valles Marineris by the Mariner 6 infrared spectrometer, J. Geophys. Res. 102, 9097–107, 1997.CrossRefGoogle Scholar
Carson, C. D., D. S. Fanning, and J. B. Dixon, Alfisols and Ultisols with acid sulfate weathering features in Texas. In Acid Sulfate Weathering (ed. Kittrick, J. A., Fanning, D. S., and Hossner, L. R.), SSSA Special Publication No. 10, Madison, WI, pp. 127–46, 1982.Google Scholar
Christensen, P. R., Bandfield, J. L., Smith, M. D., Hamilton, V. E., and Clark, R. N., Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data, J. Geophys. Res. 105, 9609–22, 2000.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al., Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results, J. Geophys. Res. 106, 23823–71, 2001a.CrossRefGoogle Scholar
Christensen, P. R., Morris, R. V., Lane, M. D., Bandfield, J. L., and Malin, M. C., Global mapping of Martian hematite deposits: remnants of water-driven processes on early Mars, J. Geophys. Res. 106, 23873–86, 2001b.CrossRefGoogle Scholar
Christensen, P. R., Wyatt, M. B., Glotch, T. D., et al., Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity rover, Science 306, 1733–9, 2004a.CrossRefGoogle Scholar
Christensen, P. R., Ruff, S. W., Fergason, R. L., et al., Initial results from the Mini-TES experiment in Gusev crater from the Spirit Rover, Science 305, 837–42, 2004b.CrossRefGoogle Scholar
Clark, B. C., Geochemical components in Martian soil, Geochem. Cosmochim. Acta 57, 4575–81, 1993.CrossRefGoogle Scholar
Clark, B. C. and Baird, A. K., Is the Martian lithosphere sulfur rich?, J. Geophys. Res. 84, 8395–402, 1979.CrossRefGoogle Scholar
Clark, B. C. III, Baird, A. K., Rose, H. J. Jr., et al., The Viking X-ray fluorescence experiment: analytical methods and early results, J. Geophys. Res. 82(28), 4577–94, 1977.CrossRefGoogle Scholar
Clark, B. C., Kenley, S. L., O'Brien, D. L., et al., Heterogeneous phase reactions of Martian volatiles with putative regolith minerals, J. Mol. Evol. 14, 91–102, 1979.CrossRefGoogle ScholarPubMed
Clark, B. C., Baird, A. K., Weldon, R. J., et al., Chemical composition of Martian fines, J. Geophys. Res. 87, 10059–67, 1982.CrossRefGoogle Scholar
Clark, B. C., Morris, R. V., McLennan, S. M., et al., Chemistry and mineralogy of outcrops at Meridiani Planum, Earth Planet. Sci. Lett. 240, 73–94, 2005.CrossRefGoogle Scholar
Clark, B. C., Arvidson, R. E., Gellert, R., et al., Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars, J. Geophys. Res. 112, E06501, doi:10.1029/2006JE002756, 2007.CrossRefGoogle Scholar
Clark, R. N. and McCord, T. B., Mars residual north polar cap: earth-based spectroscopic confirmation of water ice as a major constituent and evidence for hydrated minerals, J. Geophys. Res. 87, 367–70, 1982.CrossRefGoogle Scholar
Dreibus, G., Burghele, A., Jochum, K. P., et al., Chemical and mineral composition of ALH84001: a Martian orthopyroxenite (abs), Meteoritics 29, 461, 1994.Google Scholar
Evans, D. L. and Adams, J. B., Amorphous gels as possible analogs to Martian weathering products. Proc. Lunar Planet. Sci. Conf. X, 1829–34, 1980.Google Scholar
Feldman, W. C., Boynton, W. V., Tokar, R. L., et al., Global distribution of neutrons from Mars: results from Mars Odyssey, Science 297, 75–8, 2002.CrossRefGoogle ScholarPubMed
Feldman, W. C., Prettyman, T. H., Maurice, S., et al., Global distribution of near-surface hydrogen on Mars, J. Geophys. Res. 109, E09006, doi:10.1029/2003JE002160, 2004.CrossRefGoogle Scholar
Fernández-Remolar, D. C., Morris, R. V., Gruener, J. E., Amils, R., and Knoll, A. H., The Rio Tinto Basin Spain, Mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 149–67, 2005.CrossRefGoogle Scholar
Fries, M., Rost, D., Vicenzi, E., and Steele, A., Raman imaging analysis of jarosite in MIL 03346, Workshop on Martian Surfaces as Recorders of Atmospheric-Fluid-Rock Interactions, Houston, TX: Lunar Planetary Institute, Abstract #7060, 2006.Google Scholar
Gaines, R. V., Skinner, H. C., Foord, E. E., et al., Dana's New Mineralogy, New York: John Wiley & Sons, Inc., 1819pp., 1997.Google Scholar
Gellert, R., Rieder, R., Anderson, R. C., et al., Chemical composition of Martian rocks and soils at the Spirit landing site in Gusev crater: initial results of the Alpha Particle X-ray Spectrometer, Science 305, 829–32, 2004.CrossRefGoogle Scholar
Gellert, R., Rieder, R., Brückner, J., et al., Alpha Particle X-Ray Spectrometer (APXS): results from Gusev crater and calibration report, J. Geophys. Res. 111, E02S05, doi:10.1029/2005JE002555, 2006.CrossRefGoogle Scholar
Gendrin, A., Mangold, N., Bibring, J.-P., et al., Sulfates in Martian layered terrains: the OMEGA/Mars Express view, Science 307, 1587–91, 2005.CrossRefGoogle ScholarPubMed
Golden, D. C., Morris, R. V., Ming, D. W., Lauer, H. V. Jr., and Yang, S. R., Mineralogy of three slightly palagonitized soils from the summit of Mauna Kea, Hawaii, J. Geophys. Res. – Planets, 98(E2), 3401–11, 1993.CrossRefGoogle Scholar
Golden, D. C., Ming, D. W., Schwandt, C. S., et al., A simple inorganic process for formation of carbonates, magnetite and sulfides in Martian meteorite ALH84001, Am. Mineral. 86, 370–5, 2001.CrossRefGoogle Scholar
Golden, D. C., Ming, D. W., Morris, R. V., et al., Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001, Am. Mineral. 89, 681–95, 2004.CrossRefGoogle Scholar
Golden, D. C., Ming, D. W., Morris, R. V., and Mertzman, S. A., Laboratory simulated acid-sulfate weathering of basaltic materials: implications for formation of sulfates at Meridiani Planum and Gusev crater, Mars, J. Geophys. Res., 110 E12S07, 15, doi:10.1029/2005JE002451, 2005.CrossRefGoogle Scholar
Gooding, J. L., Wentworth, S. J., and Zolensky, M. E., Calcium carbonate and sulfate of possible extraterrestrial origin in the EETA79001 meteorite, Geochim. Cosmochim. Acta 50, 1049–59, 1988.CrossRefGoogle Scholar
Gooding, J. L., Wentworth, S. J., and Zolensky, M. E., Aqueous alteration of the Nakhla meteorite, Meteoritics 26, 135–43, 1991.CrossRefGoogle Scholar
Gooding, J. L., R. E. Arvidson, and M. Y. Zolotov, Physical and chemical weathering. In Mars (ed. Kielffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: The University of Arizona Press, 626–51, 1992.Google Scholar
Guinness, E. A., Arvidson, R. E., Jolliff, B. L., et al., Hyperspectral reflectance mapping of cinder cones at the summit of Mauna Kea and implications for equivalent observations on Mars, J. Geophys. Res. 112, E08511, doi:10.1029/2006JE002822, 2007.CrossRefGoogle Scholar
Hanel, R. A., Conrath, B. J., Hovis, W., et al., Investigation of the Martian environment by infrared spectroscopy on Mariner 9, Icarus 17, 423–42, 1972.CrossRefGoogle Scholar
Harvey, R. P. and McSween, H. Y. Jr., A possible high-temperature origin for the carbonates in the Martian meteorite ALH84001, Nature 382, 49–51, 1996.CrossRefGoogle ScholarPubMed
Haskin, L. A., Wang, A., Jolliff, B. L., et al., Water alteration of rocks and soils from the Spirit rover site, Gusev crater, Mars, Nature 436, 66–9, 2005.CrossRefGoogle ScholarPubMed
Herd, C. D. K., An occurrence of jarosite in Mil 03346: implications for conditions of Martian aqueous alteration, Meteorit. Planet. Sci. 41, A74, 2006.Google Scholar
Houck, J. R., Pollack, J. B., Sagan, C., Schaack, D., and Decker, J., High altitude infrared spectroscopic evidence for bound water on Mars, Icarus 18, 470–80, 1973.CrossRefGoogle Scholar
Hudson-Edwards, K. A., Schell, C., and Macklin, M. G., Mineralogy and geochemistry of alluvium contamination by metal mining in the Rio Tinto area, southwest Spain, App. Geochem. 14, 1015–30, 1999.CrossRefGoogle Scholar
Hunt, G. E., Logan, L. M., and Salisbury, J. W., Mars: component of infrared spectra and composition of the dust cloud, Icarus 18, 459–69, 1973.CrossRefGoogle Scholar
Hurowitz, J. A., McLennan, S. M., Lindsley, D. H., and Schoonen, M. A. A., Experimental epithermal alteration of synthetic Los Angeles meteorite: implications for the origin of Martian soils and identification of hydrothermal sites on Mars, J. Geophys. Res. 110, E07002, doi:10.1029/2004JE002391, 2005.CrossRefGoogle Scholar
Hurowitz, J. A., McLennan, S. M., Tosca, N. J., et al., In-situ and experimental evidence for acidic weathering of rocks and soils on Mars, J. Geophys. Res. 111(16), E02S19, doi:10.1029/2005JE002515, 2006.CrossRefGoogle Scholar
Jackson, M. L., Clay transformations in soil genesis during the Quaternary, Soil Sci. 99, 15–22, 1965.CrossRefGoogle Scholar
Kevie, W. and B. Yenmanas, Detailed reconnaissance soil survey of southern central plain area, Report SSR-89. Soil Survey Division & Land Development Department, Bangkok, India, 187pp., 1972.
Kittrick, J. A., Montmorillonite equilibria and the weathering environment, Soil Sci. Soc. Am. J. 35, 815–20, 1971.CrossRefGoogle Scholar
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al., Jarosite and hematite at Meridiani Planum from the Mössbauer Spectrometer on the Opportunity Rover, Science 306, 1740–5. 2004.CrossRefGoogle Scholar
Knauth, L. P., Burt, D. M., and Wohletz, K. H., Impact origin of sediments at the Opportunity landing site on Mars, Nature 438, 1123–8, 2005.CrossRefGoogle ScholarPubMed
Kloprogge, J. T., Komarneni, S., and Amonette, J. E., Synthesis of smectite clay minerals: a critical review, Clays Clay Miner. 47, 529–54, 1999.CrossRefGoogle Scholar
Lane, M. D., Morris, R. V., Mertzman, S. A., and Christensen, P. R., Evidence for platy hematite grains in Sinus Meridiani, Mars, J. Geophys. Res. 106, 5126, doi:10.1029/2001JE001832, 2002.Google Scholar
Langevin, Y., Poulet, F., Bibring, J-.P., and Gondet, B., Sulfates in the North Polar region of Mars detected by OMEGA/Mars Express, Science 307, 1584–6, 2005.CrossRefGoogle ScholarPubMed
Madden, M. E. E., Bodnar, R. J., and Rimstidt, J. D., Jarosite as an indicator of water limited chemical weathering on Mars, Nature, 431, 821–3, 2004.CrossRefGoogle ScholarPubMed
McCollom, T. M. and Hynek, B. M., A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars, Nature 438, 1129–31, 2005.CrossRefGoogle ScholarPubMed
McKay, D. S., Gibson, E. K. Jr., Thomas-Keprta, K. L., et al., Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001, Science 273, 924–30, 1996.CrossRefGoogle ScholarPubMed
McLennan, S. M., Bell, J. F. III, Calvin, W. M., et al., Provenance and diagenesis of the Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 30, 95–121, 2005.CrossRefGoogle Scholar
McSween, H. Y., Arvidson, R. E., Bell, J. F. III, et al., Basaltic rocks analyzed by the Spirit Rover in Gusev crater, Science 305, 842–5, 2004.CrossRefGoogle ScholarPubMed
McSween, H. Y., Wyatt, M. B., Gellert, R., et al., Characterization and petrologic interpretation of olivine-rich basalts at Gusev crater, Mars, J. Geophys. Res. 111(17), E02S10, doi:10.1029/2005JE002477, 2006.CrossRefGoogle Scholar
Ming, D. W., Mittlefehldt, D. W., Morris, R. V., et al., Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars, J. Geophys. Res. 111, E02S12, doi:10.1029/2005JE002560, 2006.CrossRefGoogle Scholar
Mittlefehldt, D. W., ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan, Meteoritics 29, 214–21, 1994.CrossRefGoogle Scholar
Moore, H. J., Liebes, S. Jr., Crouch, D. S., and Clark, L. V., Rock pushing and sampling under rocks on Mars, USGS Prof. Paper, 1081, 1978.Google Scholar
Moore, H. J., Hutton, R. M., Clow, G. D., and Spitzer, C. R., Physical properties of surface materials at the Viking landing sites on Mars, USGS Prof. Paper, 1389, 1987.Google Scholar
Morris, R. V., Agresti, D. G., Lauer, H. V. Jr., et al., Evidence for pigmentary hematite on Mars based on optical, magnetic, and Mossbauer studies of superparamagnetic (nanocrystalline) hematite, J. Geophys. Res. 94, 2760–78, 1989.CrossRefGoogle Scholar
Morris, R. V., Golden, D. C., Bell, J. F. III, and Lauer, H. V. Jr., Hematite, pyroxene, and phyllosilicates on Mars: implications from oxidized impact melt rocks from Manicouagan crater, Quebec, Canada, J. Geophys. Res. 100, 5319–28, 1995.CrossRefGoogle Scholar
Morris, R. V., D. W. Ming, D. C. Golden, and J. F. Bell III, An occurrence of jarositic tephra on Mauna Kea, Hawaii: implications for the ferric mineralogy of the martian surface. In Mineral Spectroscopy: A Tribute to Roger G. Burns (ed. Dyer, M. D., McCammon, C., and Schaefer, M. W.), Special Publication No. 5, Houston, TX: The Geochemical Society, pp. 327–36, 1996.Google Scholar
Morris, R. V., Golden, D. C., Bell, J. F. III, et al., Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples, J. Geophys. Res. – Planets 105, 1757–817, 2000.CrossRefGoogle Scholar
Morris, R. V., Klingelhöfer, G., Bernhardt, B., et al., Mössbauer mineralogy on Mars: first results from the Spirit landing site in Gusev crater, Science 305, 833–6, 2004.CrossRefGoogle Scholar
Morris, R. V., Klingelhöfer, G., Schröder, C., et al., Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills, J. Geophys. Res. 111, E02S13, doi:10.1029/2005JE002584, 2006a.CrossRefGoogle Scholar
Morris, R. V., Klingelhöfer, G., Schröder, C., et al., Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits, J. Geophys. Res. 111, E12S15, doi:10.1029/2006JE002791, 2006b.CrossRefGoogle Scholar
Murchie, S., Kirkland, L., Erard, S., Mustard, J., and Robinson, M., Near-infrared spectral variations of Martian surface materials from ISM imaging spectrometer data, Icarus 147, 444–71, 2000.CrossRefGoogle Scholar
Naumov, M. V., Impact-generated hydrothermal systems: data from Popigai, Kara, and Puchezh-Katunki impact structures. In Impacts in Precambian Shields: Impact Studies (ed. Plado, J. and Pesonen, L. J.), Berlin: Springer, pp. 117–72, 2002.CrossRefGoogle Scholar
Nesbitt, H. W. and Young, G. M., Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature 279, 715–17, 1982.CrossRefGoogle Scholar
Nesbitt, H. W. and Young, G. M., Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations, Geochem. Cosmochem. Acta 48, 1523–34, 1984.CrossRefGoogle Scholar
Nesbitt, H. W. and Young, G. M., Formation and diagenesis of weathering profiles. J. Geol. 97, 129–47, 1989.CrossRefGoogle Scholar
Nesbitt, H. W. and Wilson, R. E., Recent chemical weathering of basalts, Am. J. Sci. 292, 740–77, 1992.CrossRefGoogle Scholar
Newsom, H. E., Hydrothermal alteration of impact melt sheets with implications for Mars, Icarus 44, 207–16, 1980.CrossRefGoogle Scholar
Newsom, H., Clays in the history of Mars, Nature 438, 570–1, 2005.CrossRefGoogle ScholarPubMed
Newsom, H. E., Hagerty, J. J., and Goeff, F., Mixed hydrothermal fluids and the origin of the Martian soil, J. Geophys. Res. 104, 8717–28, 1999.CrossRefGoogle Scholar
Newsom, H. E., Hagerty, J. J., and Thorsos, I. E., Location and sampling of aqueous and hydrothermal deposits in Martian impact craters, Astrobiology 1, 71–88, 2001.CrossRefGoogle ScholarPubMed
Newsom, H. E., Barber, C. A., Hare, T. M., et al., Paleolakes and impact basins in southern Arabia Terra, including Meridiani Planum: implications for the formation of hematite deposits on Mars, J. Geophys. Res. 108 (E12), 8060, E02S12, doi:10.1029/2003JE002072, 2003.CrossRefGoogle Scholar
Nordstrom, D. K., Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In Acid Sulfate Weathering (ed. J. A. Kittrick, D. S. Fanning, and L. R. Hossner), SSSA Special Publication No. 10, pp. 37–56, 1982.
Nuhfer, E., Efflorescent minerals associated with coal, Master's thesis, West Virginia University, Morgantown, WV, 1967.
Pimental, G. C., Forney, P. B., and Herr, K. C., Evidence about hydrate and solid water in the Martian surface from the 1969 Mariner infrared spectrometer, J. Geophys. Res. 79, 1623–34, 1974.CrossRefGoogle Scholar
Pons, L. J., N. van Breeman, and P. M. Driesen, Physiography of coastal sediments and development of potential soil acidity. In Acid Sulfate Weathering (ed. J. A. Kittrick, D. S. Fanning, and L. R. Hossner), SSSA Special Publication No. 10, Madison, WI, 1982.
Poulet, F., Bibring, J.-P., Mustard, J. F., et al., Phyllosilicates on Mars and implications for early martian climate, Nature 438, 623–7, 2005.CrossRefGoogle ScholarPubMed
Rieder, R., Gellert, R., Anderson, R. C., et al., Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer, Science 306, 1746–9, 2004.CrossRefGoogle ScholarPubMed
Romanek, C. S., Grady, M. M., Wright, I. P., et al., Record of fluid-rock interactions on Mars from the meteorite ALH84001, Nature 372, 655–7, 1994.CrossRefGoogle ScholarPubMed
Ruff, S., Spectral evidence for zeolite in the dust on Mars, Icarus 168, 131–43, 2004.CrossRefGoogle Scholar
Ruff, S., Christensen, P. R., Blaney, D. L., et al., The rocks of Gusev crater as viewed by the Mini-TES instrument, J. Geophys. Res. 111, 36, doi:10.1029/2006JE002747, 2006.CrossRefGoogle Scholar
Singer, R. B., Spectral evidence for the mineralogy of high-albedo soils and dust on Mars, J. Geophys. Res. 87, 10159–68, 1982.CrossRefGoogle Scholar
Smith, P. H., Overview of the Phoenix Mars Lander Mission, Workshop on Martian Sulfates as Recorders of Atmospheric-Fluid-Rock Interactions, LPI Contribution No. 1331, Houston, TX: Lunar and Planetary Institute, Abstract #7069, 2006.Google Scholar
Squyres, S. W., Arvidson, R., Bell, J. F. III, et al., Initial results from the Athena Science Investigation at Gusev crater, Mars, Science 305, 794–9, 2004a.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The Opportclassy Rover's Athena Science Investigation at Meridiani Planum, Mars, Science 306, 1698–703, 2004b.CrossRefGoogle Scholar
Squyres, S. W., Grotzinger, J. P., Arvidson, R. E., et al., In situ evidence for an ancient aqueous environment on Mars, Science 306, 1709–14, 2004c.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Clark, B. C., et al., The rocks of the Columbia Hills, J. Geophys. Res. 111, E02S11, doi:10.1029/2005JE002562, 2006a.CrossRefGoogle Scholar
Squyres, S. W., Knoll, A. H., Arvidson, R. E., et al., Two years at Meridiani Planum: results from the Opportunity rover, Science 313, 1403–7, 2006b.CrossRefGoogle Scholar
Toon, O. B., Pollack, J. B., and Sagan, C., Physical properties of the particles composing the Martian dust storm of 1971–1972, Icarus 30, 663–96, 1977.CrossRefGoogle Scholar
Tosca, N. J., McLennan, S. M., Lindsley, D. H., and Schoonen, M. A. A., Acid-sulfate weathering of synthetic Martian basalt: the acid fog model revisited, J. Geophys. Res. 109, E05003, doi:10.1029/2003JE002218, 2004.CrossRefGoogle Scholar
Tosca, N. J., McLennan, S. M., Clark, B. C., et al., Geochemical modeling of evaporation processes on Mars: insight from the sedimentary record at Meridiani Planum, Earth Planet. Sci. Lett. 240, 122–48, 2005.CrossRefGoogle Scholar
Treiman, A. H., Barrett, R. A., and Gooding, J. L., Preterrestrial alteration of the Lafayette (SNC) meteorite, Meteoritics 28, 86–97, 1993.CrossRefGoogle Scholar
Ugolini, F. C., Hydrothermal origin of the clays from the upper slopes of Mauna Kea, Hawaii, Clays Clay Miner. 22, 189–94, 1974.CrossRefGoogle Scholar
van Breeman, N., Acid sulfate soils, Land Reclamation and Water Management, ILRI Publication No. 27, Waganingan, The Netherlands, pp. 53–7, 1980.
Wang, A., Haskin, L. A., Squyres, S. W., et al., Sulfate deposition in subsurface regolith in Gusev crater, Mars, J. Geophys. Res. 111, E02S17, doi:10.1029/2005JE002513, 2006a.Google Scholar
Wang, A., Korotev, R. L., Jolliff, B. L., et al., Evidence of phyllosilicates in Wooly Patch, an altered rock encountered at West Spur, Columbia Hills, by Spirit Rover, J. Geophys. Res. 111, E02S16, doi:10.1029/2005JE002516, 2006b.Google Scholar
Weaver, R. M., Jackson, M. L., and Syers, J. K., Magnesium and silicon activities in matrix solutions of montmorillonite-containing soils in relation to clay mineral stability, Soil Sci. Soc. Am. J. 35, 823–30, 1971.CrossRefGoogle Scholar
Weiss, B. P., Vali, H., Baudenbacher, H. J., et al., Records of an ancient Martian magnetic field in ALH 84001, Earth Planet. Sci. Lett. 201, 449–63, 2002.CrossRefGoogle Scholar
Wentworth, S. J. and Gooding, J. L., Carbonates and sulfates in the Chassigny meteorite: further evidence for aqueous chemistry on the SNC parent body, Meteoritics 29, 861–3, 1994.CrossRefGoogle Scholar
Wentworth, S. J. and Gooding, J. L., Weathering and secondary minerals in the Martian meteorite Shergotty, Lunar Planet. Sci. Conf., Abstract #1888 (CD-ROM), 2000.Google Scholar
Wentworth, S. J., Gibson, E. K., Velbel, M. A., and McKay, D. S., Antarctica Dry Valleys and indigenous weathering in Mars meteorites: implications for water and life on Mars, Icarus 174, 383–95, 2005.CrossRefGoogle Scholar
Wolfe, E. W., Wise, W. S., and Dalrymple, G. B., The geology and petrology of Mauna Kea Volcano, Hawaii: a study of postshield volcanism, USGS Prof. Paper, 1557, 1997.Google Scholar
Yen, A. S., Gellert, R., Schröder, C., et al., An integrated view of the chemistry and mineralogy of martian soils, Nature 436, 49–69, doi:10.1038/nature03637, 2005.CrossRefGoogle ScholarPubMed
Yen, A. S., Grotzinger, J., Gellert, R., et al., Evidence for halite at Meridiani Planum, Lunar Planet. Sci. XXXVII, Houston, TX: Lunar and Planetary Institute, Abstract #2128, 2006.Google Scholar
Yen, A. S., Morris, R. V., Gellert, R., et al., Composition and formation of the “Paso Robles” class soils at Gusev crater, Lunar Planet. Sci XXXVIII, Houston, TX: Lunar and Planetary Institute, Abstract #2030, 2007.Google Scholar
Zolotov, M. Y. and Shock, E. L., Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars, Geophys. Res. Lett. 32 (5), L21203, doi:10.1029/2005FL024253, 2005.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Aqueous alteration on Mars
    • By D. W. Ming, NASA/JSC Code KX, Building 31, Room 120 2101 NASA Road 1 Houston, TX 77058, USA, R. V. Morris, NASA/JSC Code KR, Building 31, Room 120 2101 NASA Road 1 Houston, TX 77058, USA, B. C. Clark, Planetary Sciences Laboratory Lockheed Martin Aerospce MS 8001, PO Box 179 Denver, CO 80201, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Aqueous alteration on Mars
    • By D. W. Ming, NASA/JSC Code KX, Building 31, Room 120 2101 NASA Road 1 Houston, TX 77058, USA, R. V. Morris, NASA/JSC Code KR, Building 31, Room 120 2101 NASA Road 1 Houston, TX 77058, USA, B. C. Clark, Planetary Sciences Laboratory Lockheed Martin Aerospce MS 8001, PO Box 179 Denver, CO 80201, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Aqueous alteration on Mars
    • By D. W. Ming, NASA/JSC Code KX, Building 31, Room 120 2101 NASA Road 1 Houston, TX 77058, USA, R. V. Morris, NASA/JSC Code KR, Building 31, Room 120 2101 NASA Road 1 Houston, TX 77058, USA, B. C. Clark, Planetary Sciences Laboratory Lockheed Martin Aerospce MS 8001, PO Box 179 Denver, CO 80201, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.024
Available formats
×