Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-23T12:31:10.999Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  11 September 2009

Piero Villaggio
Affiliation:
Università degli Studi, Pisa
Get access

Summary

Few words are used with so many different meanings as the term “model.” In everyday language the word “model” can be applied in a moral, fashion, economic, linguistic, or scientific context; in each case it means something completely different. Even if we restrict ourselves to the category of scientific models, the notion is ambiguous, because it could signify the reproduction in miniature of a certain physical phenomenon, and at the same time present a theoretical description of its nature that preserves the broad outline of its behavior. It is the theoretical aspect of models that we wish to consider; in order to emphasize this, we describe this type of model as “mathematical” (Tarski 1953). Formulating a mathematical model is a logical operation consisting in: (i) making a selection of variables relevant to the problem; (ii) postulating statements of a general law in precise mathematical form, establishing relations between some variables said to be data and others unknown; and (iii) carrying out the treatment of the mathematical problem to make the connections between these variables explicit.

The motivations underlying the use of mathematical models are of different types. Sometimes a model is the passage from a lesser known theoretical domain to another for which the theory is well established, as, for example, when we describe neurological processes by means of network theory. In other cases a model is simply a bridge between theory and observation (Aris 1978). The word “model” must be distinguished from “simulation.” The simulation of a phenomenon increases in usefulness with the quantity of specific details incorporated, as, for example, in trying to predict the circumstances under which an epidemic propagates. The mathematical model should instead include as few details as possible, but preserve the essential outline of the problem. The “simulation’ is concretely descriptive, but applies to only one case; the “mathematical model” is abstract and universal. Another special property of a good mathematical model is that it can isolate only some aspects of the physical fact, but not all. The merit of such a model is not of finding what is common to two groups of observed facts, but rather of indicating their diversities. A long-debated and important question is that of how to formulate a model in its most useful form.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • Piero Villaggio, Università degli Studi, Pisa
  • Book: Mathematical Models for Elastic Structures
  • Online publication: 11 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529665.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • Piero Villaggio, Università degli Studi, Pisa
  • Book: Mathematical Models for Elastic Structures
  • Online publication: 11 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529665.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • Piero Villaggio, Università degli Studi, Pisa
  • Book: Mathematical Models for Elastic Structures
  • Online publication: 11 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529665.001
Available formats
×