Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-22T03:24:39.685Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2016

Malcolm Longair
Affiliation:
University of Cambridge
Get access
Type
Chapter
Information
Maxwell's Enduring Legacy
A Scientific History of the Cavendish Laboratory
, pp. 589 - 639
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adair, G. S. (1925). The haemoglobin system, Journal of Biological Chemistry, 63, 493–545. This paper consists of six parts, covering many aspects of Adair's pioneering studies of the heamoglobin molecule.Google Scholar
Adams, A. (2009). Walter Eric Spear, Biographical Memoirs of Fellows of the Royal Society, 55, 267–289.Google Scholar
Ade, P. A. R., Aghanim, N., Armitage-Caplan, C. et al. Planck 2013 results, XV: CMB power spectra and likelihood, Astronomy and Astrophysics, 571, A15.
Adkins, C. J. (1961). The Cavendish high-fields laboratory, in High Magnetic Fields, eds Kolm, H., Lax, B., Bitter, F., and Mills, R., pp. 393–397. Cambridge, MA: MIT Press and New York: John Wiley & Sons.
Adkins, C. J. (1962). On the energy gap in superconducting tin, Proceedings of the Royal Society of London, A268, 276–289.Google Scholar
Adkins, C. J. and Phillips, W. A. (1985). Inelastic electron tunnelling spectroscopy, Journal of Physics C: Solid State Physics, 18, 1313–1346.Google Scholar
Ahmed, H. (2013). Cambridge Computing: The First 75 Years. London: Third Millennium Information.
Ahn, C. C. and Krivanek, O. L. (1983). EELS Atlas: A Reference Collection of Electron Energy Loss Spectra Covering All Stable Elements. Warrendale: Gatan.
Alexander, P. (2006). Models of young powerful radio sources, Monthly Notices of the Royal Astronomical Society, 368, 1404–1410.Google Scholar
Alexandrowicz, G. and Jardine, A. P. (2007). Helium spin-echo spectroscopy: Studying surface dynamics with ultra-high-energy resolution, Journal of Physics: Condensed Matter, 19, D5001.Google Scholar
Alfvén, H. and Herlofson, N. (1950). Cosmic radiation and radio stars, Physical Review, 78, 616.Google Scholar
Allen, J. F. and Jones, H. (1938). New phenomena connected with heat flow in helium II, Nature, 141, 243–244.Google Scholar
Allen, J. F. and Misener, A. D. (1938). Flow of liquid helium II, Nature, 141, 75.Google Scholar
Allen, J. F., Peierls, R., and Zaki Uddin, M. (1937). Heat conduction in liquid helium, Nature, 140, 62–63.Google Scholar
Alpher, R. A., Follin, J. W., and Herman, R. C. (1953). Physical conditions in the initial stages of the expanding universe, Physical Review, 92, 1347–1361.Google Scholar
Alpher, R. A., Herman, R. C., and Gamow, G. A. (1948). Thermonuclear reactions in the expanding universe, Physical Review, 74, 1198–1199.Google Scholar
Altland, A. and Simons, B. (2010). Condensed Matter Field Theory. Cambridge: Cambridge University Press.
Ampère, A.-M. (1826). Théorie des Phénomènes Électro-Dynamique, Uniquement Déduite de l'Expérience. Paris: Méquingon-Marvis.
Anderson, C. D. (1932). The apparent existence of easily deflected positives, Science, 76, 238–239.Google Scholar
Anderson, P. W. (1958). Absence of diffusion in certain random lattices, Physical Review, 109, 1492–1505.Google Scholar
Anderson, P. W. (1992). Local moments and localized states: 1977 Nobel Prize lecture, in Nobel Lectures, Physics 1971–1980, ed. Lundqvist, S., pp. 376–398. Singapore: World Scientific.
Anderson, P. W. and Rowell, J. M. (1963). Probable observation of the Josephson superconducting tunneling effect, Physical Review Letters, 10, 230–232.Google Scholar
Andersson, S. and Pendry, J. B. (1972). Surface structures from low energy electron diffraction, Journal of Physics C: Solid State Physics, 5, L41–L45.Google Scholar
Andrade, E. N. da C. (1964). Rutherford and the Nature of the Atom. New York: Doubleday. The quotation is on page 111.
Andrew, E. R. (1948). The intermediate state of superconductors, III: Theory of behaviour of superconducting cylinders in transverse magnetic fields, Royal Society of London Proceedings, Series A, 194, 98–112.Google Scholar
Andrew, E. R. and Lock, J. M. (1950). The magnetization of superconducting plates in transverse magnetic fields, Proceedings of the Physical Society A, 63, 13–25.Google Scholar
Appleton, E. V. (1925). Geophysical influences on the transmission of wireless waves, Proceedings of the Physical Society of London, 37, 16D–22D.Google Scholar
Appleton, E. V. (1927). The existence of more than one ionised layer in the upper atmosphere, Nature, 120, 330.Google Scholar
Appleton, E. V. (1931). Thermionic Vacuum Tubes. London: Metheun and Co.
Appleton, E. V. (1932). Wireless studies of the ionosphere, Journal of the Institution of Electrical Engineers, 71, 642–650.Google Scholar
Appleton, E. V. and Barnett, M. A. F. (1925a). Local reflection of wireless waves from the upper atmosphere, Nature, 115, 333–334.Google Scholar
Appleton, E. V. and Barnett, M. A. F. (1925b). A note on wireless signal strength measurements made during the solar eclipse of 24 January 1925, Proceeedings of the Cambridge Philosophical Society, 22, 672–675.Google Scholar
Appleton, E. V. and Barnett, M. A. F. (1925c). On some direct evidence for downward atmospheric reflection of electric rays, Proceeedings of the Royal Society of London, A109, 621–641.Google Scholar
Appleton, E. V. and Barnett, M. A. F. (1925d). Wirelss wave propagation, the magnetoionic theory: The part played by the atmosphere; the effect of diurnal variations, Electrician, 94, 398.Google Scholar
Appleton, E. V. and van der Pol, B. (1921). On the form of free triode vibrations, Philosophical Magazine (6), 42, 201–221.Google Scholar
Appleton, E. V. and van der Pol, B. (1922). On a type of oscillation-hysteresis in a simple triode generator, Philosophical Magazine (6), 43, 177–193.Google Scholar
Archard, G. D. (1956). Electron optical properties of electrode systems of four- and eightfold symmetry, in Proceedings of the International Conference on Electron Microscopy, 1954, ed. Ross, R., pp. 97–105. London: Royal Microscopical Society.
Ashmead, J. (1950). A Joule–Thomson cascade liquefier for helium, Proceedings of the Physical Society, 63, 504–508.Google Scholar
Atkins, K. R. and Osborne, D. V. (1950). The velocity of second sound below 1K, Philosophical Magazine (7), 41, 1078–1081.Google Scholar
Avery, O. T., MacLeod, C. M., and McCarty, M. (1944). Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by desoxyribonucleic, Journal of Experimental Medicine, 79, 137–158.Google Scholar
Baade, W. and Minkowski, R. (1954). Identification of the radio sources in Cassiopeia, Cygnus A, and Puppis A, Astrophysical Journal, 119, 206–214.Google Scholar
Bacher, R. F. and Condon, E. U. (1932). The spin of the neutron, Physical Review, 41, 683–685.Google Scholar
Baeyer, O. von and Hahn, O. (1910). Magnetische lininenspektren von β-strahlen, Physicalische Zeitung, 11, 488–493.Google Scholar
Baeyer, O. von, Hahn, O., and Meitner, L. (1911a). Nachwies von β-strahlen bei radium D, Physicalische Zeitung, 12, 378–379.Google Scholar
Baeyer, O. von, Hahn, O., and Meitner, L. (1911b). Über die β-strahlen des aktiven neiderschlags des radiums, Physicalische Zeitung, 12, 273–279.Google Scholar
Baeyer, O. Hahn, O. von, and Meitner, L. (1912). Das magnetische spektren der β-strahlen des thoriums, Physicalische Zeitung, 13, 264–266.Google Scholar
Baker, J. C., Grainge, K., Hobson, M. P. et al. (1999). Detection of cosmic microwave background structure in a second field with the Cosmic Anisotropy Telescope, Monthly Notices of the Royal Astronomical Society, 308, 1173–1178.Google Scholar
Baldwin, J. E. (1967). The non-thermal radio-emission from the Galaxy (Introductory Report) in, Radio Astronomy and the Galactic System, ed. van Woerden, H., volume 31 of IAU Symposium, pp. 337–354. London: Academic Press.
Baldwin, J. E., Harris, C. S., and Ryle, M. (1973). 5 GHz observations of the infrared star MWC 349, and the HII condensation W3(OH), Nature, 241, 38–39.Google Scholar
Baldwin, J. E. and Mackay, C. D. (1988). The COAST interferometer project, in High- Resolution Imaging by Interferometry, ed. Merkle, F., volume 29 of European Southern Observatory Conference and Workshop Proceedings, pp. 935–938. Garching: European Southern Observatory.
Baldwin, J. E. and Warner, P. J. (1976). Aperture synthesis without phase, Monthly Notices of the Royal Astronomical Society, 175, 345–353.Google Scholar
Baldwin, J. E. and Warner, P. J. (1978). Phaseless aperture synthesis, Monthly Notices of the Royal Astronomical Society, 182, 411–422.Google Scholar
Baldwin, J. E., Beckett, M. G., Boysen, R. C. et al. (1996). The first images from an optical aperture synthesis array: Mapping of Capella with COAST at two epochs, Astronomy and Astrophysics, 306, L13–L16.Google Scholar
Baldwin, J. E., Haniff, C. A., Mackay, C. D., and Warner, P. J. (1986). Closure phase in high-resolution optical imaging, Nature, 320, 595–597.Google Scholar
Balibar, S. (2010). The enigma of supersolidity, Nature, 464, 176–182.Google Scholar
Bardeen, J., Cooper, L. N., and Schreiffer, J. R. (1957). Theory of superconductivity, Physical Review, 108, 1175–1204.Google Scholar
Barisic, N. (2013). Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors, Proceedings of the National Academy of Sciencess of the United States of America, 110, 12235–12240 Google Scholar
Barkla, C. G. (1903). Secondary radiation from gases subject to X-rays, Philosophical Magazine (6), 5, 685–698.Google Scholar
Barkla, C. G. (1904). Polarisation in Röntgen rays, Nature, 19, 463.Google Scholar
Barkla, C. G. (1906). Polarisation of secondary Röntgen radiation, Proceedings of the Royal Society of London, A77, 247–255.Google Scholar
Barkla, C. G. (1911a). Note on the energy of scattered X-radiation, Philosophical Magazine (6), 21, 648–652.Google Scholar
Barkla, C. G. (1911b). The spectra of the fluorescent Röntgen radiations, Philosophical Magazine (6), 22, 396–412.Google Scholar
Barkla, C. G. and Sadler, C. A. (1908). Homogeneous secondary Röntgen radiations, Philosophical Magazine (6), 16, 550–584.Google Scholar
Batchelor, G. (1953). The Theory of Homogeneous Turbulence. Cambridge: Cambridge University Press.
Batchelor, G. (1996). The Life and Legacy of G. I. Taylor. Cambridge: Cambridge University Press.
Beauchamp, K. (1997). Exhibiting Electricity: IEE History of Technology, Series 21. London: The Institution of Electrical Engineers.
Becher, H. (1980). William Whewell and Cambridge mathematics, Historical Studies in the Physical Sciences, 11, 1–48.Google Scholar
Becquerel, H. (1896). Sur les radiations invisibles émises par les corps phosphorescents (On the invisible radiation emitted by phosphorescent bodies), Comptes Rendus de l'Academie des Sciences, 122, 501–503.Google Scholar
Bednorz, J. G. and Müller, K. A. (1986). Possible high Tc superconductivity in the Ba-La- Cu-O system, Zeitschrift fur Physik B: Condensed Matter, 64, 189–193.Google Scholar
Beevers, C. A. and Cochran, W. (1946). The crystal structure of sucrose sodium bromide dihydrate, Proceedings of the Royal Society of London, A190, 257–272.Google Scholar
Bell, A. R. (1978a). The acceleration of cosmic rays in shock fronts I, Monthly Notices of the Royal Astronomical Society, 182, 147–156.Google Scholar
Bell, A. R. (1978b). The acceleration of cosmic rays in shock fronts II, Monthly Notices of the Royal Astronomical Society, 182, 443–455.Google Scholar
Bennett, A. (1962). The revised 3C catalogue of radio sources, Memoirs of the Royal Astronomical Society, 67, 163–172.Google Scholar
Bennett, F., Brain, R., Bycroft, K. et al. (1993). Empires of Physics: A Guide to the Exhibition. Cambridge: Whipple Museum of the History of Science.
Bergemann, C., Julian, S. R., MacKenzie, A. P., Nishizaki, S., and Maeno, Y. (2000). Detailed topography of the Fermi surface of Sr2RuO4, Physical Review Letters, 84, 2662.Google Scholar
Bergemann, C., MacKenzie, A. P., Julian, S. R., Forsythe, D., and Ohmichi, E. (2003). Quasi-two-dimensional Fermi liquid properties of the unconventional superconductor Sr2RuO4, Advances in Physics, 52, 639–725.Google Scholar
Berggren, K.-F., Thornton, T. J., Newson, D. J., and Pepper, M. (1986). Magnetic depopulation of 1D subbands in a narrow 2D electron gas in a GaAs:AlGaAs heterojunction, Physical Review Letters, 57, 1769–1772.Google Scholar
Bernal, J. D. (1924). The structure of graphite, Proceedings of the Royal Society of London, A106, 749–773.Google Scholar
Bernal, J. D. (1926). On the interpretation of X-ray single rotation photographs, Proceedings of the Royal Society of London, A113, 117–160.Google Scholar
Bernal, J. D. (1929). A universal X-ray photogoniometer, Journal of Scientific Instruments, 6, 343–353.Google Scholar
Bernal, J. D. and Crowfoot, D. (1934). X-ray photographs of crystalline pepsin, Nature, 133, 794–795.Google Scholar
Bernal, J. D., Fankuchen, I., and Perutz, M. (1938). An X-ray study of chymotrypsin and hæmoglobin, Nature, 141, 523–524.Google Scholar
Bernhoeft, N. R., Lonzarich, G. G, Mitchell, P, W., and Paul, D. M. (1983). Magnetic excitations in Ni3Al at low energies and long wavelengths, Physical Review B, 28, 422– 424. Google Scholar
Best, P. N., Longair, M. S., and Röttgering, H. J, A. (1996). Evolution of the aligned structures in z-1 radio galaxies, Monthly Notices of the Royal Astronomical Society, 280, L9–L12.Google Scholar
Best, P. N., Longair, M. S., and Röttgering, H. J. A. (1997). HST, radio and infrared observations of 28 3CR radio galaxies at redshift z-1, I: The observations, Monthly Notices of the Royal Astronomical Society, 292, 758.Google Scholar
Best, P. N., Longair, M. S., and Röttgering, H. J. A. (1998). HST, radio and infrared observations of 28 3CR radio galaxies at redshift z-, II: Old stellar populations in central cluster galaxies, Monthly Notices of the Royal Astronomical Society, 295, 549.
Best, P. N., Röttgering, H. J. A., and Longair, M. S. (2000). Ionization, shocks and evolution of the emission-line gas of distant 3CR radio galaxies, Monthly Notices of the Royal Astronomical Society, 311, 23–36.Google Scholar
Biot, J. B. and Savart, F. (1820). Note sur le magnétisme de al pile de Volta, Annales de Chimie et de Physique, 15, 222–223.Google Scholar
Birtwistle, G. (1926). The Quantum Theory of the Atom. Cambridge: Cambridge University Press.
Birtwistle, G. (1928). The New Quantum Mechanics. Cambridge: Cambridge University Press.
Blackett, P. M. S. (1925). The ejection of protons from nitrogen nuclei, photographed by the Wilson method, Proceedings of the Royal Society of London, A107, 349–360.Google Scholar
Blackett, P. M. S. (1960). Charles Thomson Rees Wilson, Biographical Memoirs of the Fellows of the Royal Society, 6, 268–295.Google Scholar
Blackett, P. M. S. (1964). Cloud chamber researches in nuclear physics and cosmic Radiation: 1948 Nobel Prize lecture, in Nobel Lectures, Physics 1942–1962, pp. 97–119. Amsterdam: Elsevier.
Blackett, P. M. S. and Champion, F. C. (1931). The scattering of slow alpha-particles by helium, Proceedings of the Royal Society of London, A130, 380–388.Google Scholar
Blackett, P. M. S. and Occhialini, G. P. S. (1933). Some photographs of the tracks of penetrating radiation, Proceedings of the Royal Society of London, A139, 699–722.Google Scholar
Blackler, J. M. (1958). Models for main sequence stars, Monthly Notices of the Royal Astronomical Society, 118, 38–44.Google Scholar
Blain, A. W. (1997). Gravitational lensing by clusters of galaxies in the millimetre/ submillimetre waveband, Monthly Notices of the Royal Astronomical Society, 290, 553–565.Google Scholar
Blain, A. W. and Longair, M. S. (1993). Submillimetre cosmology, Monthly Notices of the Royal Astronomical Society, 264, 509–521.Google Scholar
Bland, J. A. C. and Heinrich, B., eds (1994). Ultrathin Magnetic Structures, vol. I and II. Berlin: Springer. The second edition was published in 2005, by which date it had expanded to four volumes.
Blow, D. M. (2004). Max Ferdinand Perutz, Biographical Memoirs of Fellows of the Royal Society, 50, 227–256.Google Scholar
Blythe, J. H. (1957a). A new type of pencil beam aerial for radio astronomy, Monthly Notices of the Royal Astronomical Society, 117, 644–651.Google Scholar
Blythe, J. H. (1957b). Results of a survey of galactic radiation at 38 Mc/s, Monthly Notices of the Royal Astronomical Society, 117, 652–662.Google Scholar
Bohr, N. (1912). Unpublished memorandum for Ernest Rutherford, in On the Constitution of Atoms and Molecules, ed. Rosenfeld, L. Copenhagen: Munksgaard
Bohr, N. (1913a). On the constitution of atoms and molecules (Part I), Philosophical Magazine (6), 26, 1–25.Google Scholar
Bohr, N. (1913b). On the constitution of atoms and molecules, Part II: Systems containing only a single electron, Philosophical Magazine (6), 26, 476–502.Google Scholar
Bohr, N. (1913c). On the constitution of atoms and molecules, Part III: Systems containing several nuclei, Philosophical Magazine (6), 26, 857–875.Google Scholar
Bohr, N. (1913d). On the theory of the decrease of velocity of moving electrified particles on passing through matter, Philosophical Magazine (6), 25, 10–31.Google Scholar
Bohr, N. (1918). On the quantum theory of line spectra, Part II: On the hydrogen spectrum, Mathematisk-Fysiske Meddelelser, Det Kgl. Danske Videnskabernes Selskab: Skrifter 8, 4.1, 37–100. Reprinted in Collected works, 3, 103–166.Google Scholar
Bohr, N. (1922). The structure of the atom: 1922 Nobel Prize lecture, in Nobel Lectures 1922–1941, pp. 7–43. Amsterdam: Elsevier. This volume was published in 1965.
Bohr, N., Kramers, H. A., and Slater, J. C. (1924). The quantum theory of radiation, Philosophical Magazine (6), 47, 785–822.Google Scholar
Bolton, J. G., Stanley, G. J., and Slee, O. B. (1949). Positions of three discrete sources of galactic radio-frequency radiation, Nature, 164, 101–102.Google Scholar
Boltwood, B. B. and Rutherford, E. (1911). Production of helium by radium, Philosophical Magazine (6), 22, 586–604.Google Scholar
Bose, S. N. (1924). Planck's gesetz und lichtquantenhypothese (Planck's law and the hypothesis of light quanta), Zeitschrift für Physik, 26, 178–181.Google Scholar
Bothe, W. and Becker, H. (1930). Künstliche erregungen von kern γ -strahlen, Zeitschrift für Physik, 66, 289–306.Google Scholar
Bothe, W. and Kolhörster, W. (1929). The nature of the high-altitude radiation, Zeitschrift für Physik, 56, 751–777.Google Scholar
Bowden, F.P.and Tabor, D. (1939). The area of contact between stationary and between moving surfaces, Royal Society of London Proceedings, Series A, 169, 391–413.Google Scholar
Bowden, F.P.and Tabor, D. (1950). The Friction and Lubrication of Solids, Part I. Oxford: Clarendon Press. Second edition 1954. The book was reissued as an Oxford Science Classic in 1986 and printed again in 1996.
Bowden, F.P.and Tabor, D. (1956). Friction and Lubrication. London: Methuen. Revised and enlarged edition was published in 1967
Bowden, F.P.and Tabor, D. (1964). The Friction and Lubrication of Solids, Part II. Oxford: Clarendon Press.
Bowden, F.P.and Yoffe, A. D. (1952). Initiation and Growth of Explosion in Liquids and Solids. Cambridge: Cambridge University Press. Reissued as a Cambridge Science Classic in 1985.
Bowden, F.P. and Yoffe, A. D. (1958). Fast Reactions in Solids. London: Butterworths
Bowen, I. (1927). The origin of the nebulium spectrum, Nature, 120, 473.Google Scholar
Bracewell, R., ed. (1959). Paris Symposium on Radio Astronomy. Stanford: Stanford University Press.
Bradley, A. J. and Thewlis, J. (1926). The structure of γ -brass, Proceedings of the Royal Society of London, A112, 678–692.Google Scholar
Bragg, W.H. and Bragg, W. L. (1913). The structure of diamond, Proceedings of the Royal Society of London, A89, 277–291 Google Scholar
Bragg, W.L.(1912a). The reflection of X-rays from crystals, Proceedings of the Cambridge Philosophical Society, 17(1), 43–57.Google Scholar
Bragg, W.L.(1912b). The specular reflection of X-rays, Nature, 90, 410.Google Scholar
Bragg, W.L.(1913a). The analysis of crystals by the X-ray spectrometer, Proceedings of the Royal Society of London, A89, 468–489.Google Scholar
Bragg, W.L.(1913b). The structure of some crystals, as indicated by their diffraction of X-rays, Proceedings of the Royal Society of London, A89, 248–277 Google Scholar
Bragg, W.L.(1921). The dimensions of atoms and molecules, Science Progress, 16, 45–55.Google Scholar
Bragg, W.L.(1924a). The refractive indices of calcite and aragonite, Proceedings of the Royal Society of London, A105, 370–386.Google Scholar
Bragg, W.L.(1924b). The structure of aragonite, Proceedings of the Royal Society of London, A105, 16–39.Google Scholar
Bragg, W.L.(1929). The determination of parameters in crystal strcutres by means of Fourier series, Proceedings of the Royal Society of London, A123, 537–559.Google Scholar
Bragg, W.L.(1939a). A new type of ‘X-ray microscope’, Nature, 143, 678.Google Scholar
Bragg, W.L.(1939b). Patterson diagrams in crystal analysis, Nature, 143, 73–74.Google Scholar
Bragg, W.L.(1942a). A model illustrating intercrystalline boundaries and plastic flow in metals, Journal of Scientific Instruments, 19, 148–150.Google Scholar
Bragg, W.L.(1942b). Physics after the war, Nature, 150, 75–80 and 374.Google Scholar
Bragg, W.L.(1944). Organization and finance of science in universties, The Political Quarterly, 15, 330–341.Google Scholar
Bragg, W.L.(1948). Organisation and work of the Cavendish Laboratory, Nature, 161, 627–628.Google Scholar
Bragg, W.L.(1951). Department of Physics: Report of the Head of Department for the year 1949–50, Cambridge University Reporter, 81, 787–794.Google Scholar
Bragg, W.L.(1954). Department of Physics: Report of the Head of Department for the year 1952–53, Cambridge University Reporter, 84, 807–822.Google Scholar
Bragg, W.L.(1965). First stages in the X-ray analysis of proteins, Reports on Progress in Physics, 28, 1–14.Google Scholar
Bragg, W.L.and Warren, B. (1928). The structure of diopside CaMg(SiO3)2, Zeitschrift für Kristallographie und Kristallgeometrie, 69, 169–193 Google Scholar
Bragg, W.L.and West, J. (1926). The structure of beryl, Be3Al2(SiO3)6, Proceedings of the Royal Society of London, A111, 691–714.Google Scholar
Bragg, W.L.and West, J. (1928). A technique for the X-ray examination of crystal strcutres with many parameters, Zeitschrift für Kristallographie und Kristallgeometrie, 69, 118– 148.Google Scholar
Bragg, W.L., Kendrew, J. C., and Perutz, M. F. (1950). Polypeptide chain configurations in crystalline proteins, Proceedings of the Royal Society of London, A203, 321– 357.Google Scholar
Breit, G. and Tuve, M. A. (1928). The production and application of high voltage in the laboratory, Nature, 121, 535–536.Google Scholar
Bridle, A. H. (1967). The spectrum of the radio background between 13 and 404 MHz, Monthly Notices of the Royal Astronomical Society, 136, 219–240.Google Scholar
Broun, D. M., Morgan, D. C., Ormeno, R. J. et al. (1997). In-plane microwave conductivity of the single-layer cuprate Tl2Ba2CuO6+δ, Physical Review B, 56, R11443(R).Google Scholar
Brown, A. (2005). J. D., Bernal: The Sage of Science. Oxford: Oxford University Press.
Brown, A., Zemansky, M. W., and Boorse, H. A. (1952). Behaviour of the heat capacity of superconducting niobium below 4.5 K, Physical Review, 86, 134–135.Google Scholar
Brown, G. I. (1991). The evolution of the term ‘mixed mathematics’, Journal of the History of Ideas, 52, 81–102.Google Scholar
Brown, L. (1999). A Radar History of World War II: Technical and Military Imperatives. Bristol: IOP Publishing
Bruley, J. and Brown, L.M. (1989). Quantitative electron energy-loss spectroscopy microanalysis of platelet and voidite defects in natural diamond, Philosophical Magazine A, 59, 247–261.Google Scholar
Buchenau, U., Prager, ,M., Nücker, N. et al. (1986). Low-frequencymodes in vitreous silica, Physical Review B, 34, 5665–5673.Google Scholar
Buchenau, U., Zhou, H. M., Nücker, N., Gilroy, K. S., and Phillips, W. A. (1988). Structural relaxation in vitreous silica, Physical Review Letters, 60, 1318–1321.Google Scholar
Buckingham, E. (1914). On physically similar systems: Illustrations of the use of dimensional analysis, Physical Review, 4, 345–376.Google Scholar
Budden, K. G. (1988). John Ashworth Ratcliffe, Biographical Memoirs of Fellows of the Royal Society, 34, 671–711.Google Scholar
Burch, S. F. (1977). Multifrequency radio observations of 3C 31: A large radio galaxy with jets and peculiar spectra, Monthly Notices of the Royal Astronomical Society, 181, 599–610.Google Scholar
Burns, J. R., Göpfrich, K., Wood, J. et al. (2013). Lipid-bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor, Angewandte Chemie, International Edition, 46, 12069–12072.Google Scholar
Burroughes, J. H., Bradley, D. D. C., Brown, A. R. et al. (1990). Light-emitting-diodes based on conjugated polymers, Nature, 347, 539–541.Google Scholar
Burroughes, J. H., Jones, C. A., and Friend, R. H. (1988). New semiconductor device physics in polymer diodes and transistors, Nature, 335, 137–141.Google Scholar
Busch, H. (1926). Berechnung der bahn von kathodenstrahlen im axialsymmetrischen elektromagnetischen felde, Annalen der Physik (4), 386, 974–993.Google Scholar
Buscher, D. F., Baldwin, J. E., Warner, P. J., and Haniff, C. A. (1990). Detection of a bright feature on the surface of Betelgeuse, Monthly Notices of the Royal Astronomical Society, 245, 7P–11P.Google Scholar
Campbell, A. M. and Evetts, J. E. (1972). Critical Currents in Superconductors. London: Taylor and Francis.
Campbell, J. (1999). Rutherford: Scientist Supreme. Christchurch: AAS Publications.
Campbell, L. and Garnett, W. (1882). The Life of James Clerk Maxwell. London: Macmillan.
Carnot, N. L. S. (1824). Réflections sur la Puissance Motrice du Feu et sur les Machines Propres à Developper cette Puissance (Reflections on the Motive Power of Heat and on Machines Fitted to Develop this Power). Paris: Bachelier, Libraire.
Carpenter, H. C. H. and Elam, C. E. (1921). The production of single crystals of aluminium and their tensile properties, Proceedings of the Royal Society of London, A100, 329–353.Google Scholar
Castaing, R. and Descamps, J. (1955). Sur les bases physiques de lanalyse ponctuelle par spectrographie X, Journal de Physique (Paris), 16, 304–310.Google Scholar
Cathcart, B. (2005). The Fly in the Cathedral: How a Small Group of Cambridge Scientists Won the Race to Split the Atom. London: Viking.
Cattermole, M. J. G. and Wolfe, A. F. (1987). Horace Darwin's Shop: A History of the Cambridge Scientific Instrument Company 1878–1968. Bristol: Adam Hilger.
Chadwick, J. (1932a). The existence of a neutron, Proceedings of the Royal Society of London, A136, 692–708.
Chadwick, J. (1932b). Possible existence of a neutron, Nature, 129, 312.Google Scholar
Chadwick, J. (1933). Bakerian Lecture: The neutron, Proceedings of the Royal Society of London, A142, 1–25.Google Scholar
Chadwick, J. (1984). Some personal notes on the discovery of the neutron, in Cambridge Physics in the Thirties, ed. Hendry, J., pp. 42–45. Bristol: Adam Hilger. This paper was read at the Tenth International Congress of the History of Science, 1962, and first published in volume 1 of the proceedings (Paris: Hermann et Cie, 1964).
Chadwick, J. and Goldhaber, M. (1934). A ‘nuclear photo-effect’: Disintegration of the diplon by γ -rays, Nature, 134, 237–238.Google Scholar
Chadwick, J., Constable, J. E. R., and Pollard, E. C. (1931). Artificial disintegration by α-particles, Proceedings of the Royal Society of London, A130, 463–489.Google Scholar
Chandrasekhar, S. (1995). Newton's Principia for the Common Reader. Oxford: Clarendon Press.
Chaudhri, M. M. and Chen, L. (1986). The catastrophic failure of thermally toughened tempered glass caused by small-particle impact, Nature, 320, 48–50.Google Scholar
Chen, Y. T. and Cook, A. H. (1993). Gravitational Experiments in the Laboratory. Cambridge: Cambridge University Press.
Chen, Y. T., Cook, A. H., and Metherell, A. J. F. (1984). An experimental test of the inverse square law of gravitation at range of 0.1 m, Proceedings of the Royal Society of London, A394, 47–68.Google Scholar
Ciesla, C.M., Arnone, D. D., Corchia, A. et al. (2000). Biomedical applications of terahertz pulse imaging, in Commercial and Biomedical Applications of Ultrafast Lasers II, eds Neev, J. and Reed, M. K., volume 3934, pp. 73–81. Bristol: Proceedings of SPIE.Google Scholar
Clapeyron, E. (1834). Mémoire sur la puissance motrice de la chaleur. Paris: Jacques Gabay.
Clark, W. (1961). The Birth of the Bomb: Britain's Part in the Weapon That Changed the World. London: Phoenix House.
Clarke, J. (1966). A superconducting galvanometer employing Josephson tunnelling, Philosophical Magazine, 13, 115–127.Google Scholar
Clarke, J. (2011). SQUIDs: Then and now, in BCS: 50 Years, eds Cooper, L. N. and Feldman, D., pp. 145–184. New Jersey: World Scientific.
Clausius, R. (1857). Über die art der bewegung, die wir wärme nennen (On the nature of the motion which we call heat), Annalen der Physik (2), 176, 353–380.Google Scholar
Cochran, W. (1946). Addition compounds between sucrose and sodium halides, Nature, 157, 321.Google Scholar
Cochran, W. (1948). The Fourier method of crystal structure analysis, Acta Crystallographica, 1, 138–142.Google Scholar
Cochran, W. and Crick, F. H. C. (1952). Evidence for the Pauling–Corey helix in synthetic polypeptides, Nature, 169, 234–235.Google Scholar
Cochran, W., Crick, F. H. C., and Vand, V. (1952). The transform of atoms on a helix, Acta Crystallographica, 5, 581–586.Google Scholar
Cockcroft, J. D. and Walton, E. T. S. (1930). Experiments with high velocity positive ions, Proceedings of the Royal Society of London, A129, 477–489.Google Scholar
Cockcroft, J. D. and Walton, E. T. S. (1932). Experiments with high velocity positive ions, II: The disintegration of elements by high velocity protons, Proceedings of the Royal Society of London, A137, 229–242.Google Scholar
Cohen, L., Gray, I. R., Porch, A., and Waldram, J. R. (1987). Surface impedance measurements of superconducting YBCO, Journal of Physics F: Metal Physics, 17, L179–L183.Google Scholar
Cohen, M. H., Falicov, L. M., and Phillips, J. C. (1962). Superconductive tunneling, Physical Review Letters, 8, 316–318.Google Scholar
Coleman, P. and Schofield, A. J. (2005). Quantum criticality, Nature, 433, 226–229.Google Scholar
Compton, A. H. (1922). The spectrum of secondary rays, Physical Review, 19, 267–268.Google Scholar
Cook, A. H. (1966). Suggested mechanism for the anomalous excitation of OH microwave emissions from HII regions, Nature, 210, 611–612.Google Scholar
Cook, A. H. (1973). Physics of the Earth and Planets. New York: John Wiley & Sons.
Cook, A. H. (1975). On the structure of hydroxyl maser sources, Monthly Notices of the Royal Astronomical Society, 171, 605–618.Google Scholar
Cook, A. H. (1977). Celestial Masers. Cambridge: Cambridge University Press.
Cook, A. H. (1978). Physics of celestial masers, Quarterly Journal of the Royal Astronomical Society, 19, 255–268.Google Scholar
Cook, A. H. (1980). Interiors of the Planets Cambridge: Cambridge University Press.
Cook, A. H. (1981). Molecular spectroscopy prompted by astrophysical observations, Philosophical Transactions of the Royal Society of London, A303, 551–563.Google Scholar
Cook, A. H. (1988). The Motion of the Moon. Bristol: Adam Hilger, 1988.
Cook, A. H. and Chen, Y. T. (1982). On the significance of the radial Newtonian gravitational force of the finite cylinder, Journal of Physics A: Mathematical and General, 15, 1591–1597.Google Scholar
Cooley, J.W. and Tukey, J.W. (1965). An algorithm for the machine calculation of complex Fourier series, Mathematics of Computation, 19, 297–301.Google Scholar
Cooper, N. R. (2011). Optical flux lattices for ultracold atomic gases, Physical Review Letters, 106, 175301.Google Scholar
Cosslett, V. E. and Duncumb, P. (1956). Micro-analysis by a flying-spot X-ray method, Nature, 177, 1172–1173.Google Scholar
Cosslett, V. E. and Nixon, W. C. (1950). X-Ray Microscopy. Cambridge: Cambridge University Press.
Cosslett, V. E. and Nixon, W. C. (1951). X-ray shadow microscope, Nature, 168, 24–25.Google Scholar
Cosslett, V. E., Camps, R. A., Saxton, W. O. et al. (1979). Atomic resolution with a 600-kV electron microscope, Nature, 281, 49–51.Google Scholar
Courtney-Pratt, J. S. (1957). A review of the methods of high-speed photography, Reports on Progress in Physics, 20, 379–432.Google Scholar
Crick, A., Tiffert, T., Shah, S. et al. (2013). An automated live imaging platform for studying merozoite egress-invasion in malaria cultures, Biophysical Journal, 104, 997–1005.Google Scholar
Crick, F. (1988). What Mad Pursuit: A Personal View of Scientific Discovery. New York: Basic Books.
Crowther, J. G. (1974). The Cavendish Laboratory, 1874–1974. London: Macmillan.
Curie, I. (1931). Sur le rayonnement γ nucléaire excité dans le glucinium et dans le lithium par les rayons α du polonium, Comptes Rendus(Paris), 193, 1412.Google Scholar
Curie, I. and Joliot, F. (1932). The emission of high energy protons from hydrogenous substances irradiated with very penetrating γ -rays, Comptes Rendus (Paris), 194, 273– 275 Google Scholar
Curie, M. P. and Skłodowska-Curie, M. (1898). On a new radioactive substance contained in pitchblende, Comptes Rendus, 127, 175–178.Google Scholar
Curie, M. P., Skłodowska-Curie, M., and Bémont, G. (1898). On a new, strongly radioactive substance, contained in pitchblende, Comptes Rendus, 127, 1215–1217.Google Scholar
Dahl, P. F. (2002). From Nuclear Transmutation to Nuclear Fission, 1932–1939. Bristol: IOP Publishing.
Dalton, J. (1808). A New System of Chemical Philosophy. Manchester: R. Bickerstaff
Darwin, C. G. (1912). A theory of the absorption and scattering of the α-rays, Philosophical Magazine (6), 23, 901–920.Google Scholar
Darwin, C. G. (1958). Douglas Rayner Hartree, 1897–1958, Biographical Memoirs of Fellows of the Royal Society, 4, 102–116.Google Scholar
Darwin, G. and Darwin, H. (1881). Lunar disturbance of gravity: Report of the committee, Nature, 25, 20–21.Google Scholar
Davies, R. A., Uren, M., and Pepper, M. (1981). Magnetic separation of localisation and interaction effects in a two-dimensional electron gas at low temperatures, Journal of Physics C: Solid State Physics, 14, 5737–5762 Google Scholar
Davis, B. and Barnes, A. H. (1929). Capture of electrons by swiftly-moving alpha-particles, Physical Review, 34, 152–156.Google Scholar
Davis, E. A. and Falconer, I. J. (1997). J.J. Thomson and the Discovery of the Electron. London: Taylor and Francis.
de Boer, J. H. and Verwey, E. J. W. (1937). Semi-conductors with partially and with completely filled 3d-lattice bands, Proceedings of the Physical Society, 49, 59–71.Google Scholar
de Broglie, L. (1923a). Les quanta, la théorie cinétique de gaz et la principe et le principe de Fermat, Comptes Rendus (Paris), 177, 630–632.Google Scholar
de Broglie, L. (1923b). Ondes et quanta, Comptes Rendus (Paris), 177, 507–510.Google Scholar
de Broglie, L. (1923c). Quanta de lumière, diffraction et interférence, Comptes Rendus (Paris), 177, 548–550.Google Scholar
de Bruyne, N. A. (1928). The action of strong electric fields on the current from a thermionic cathode, Proceedings of the Royal Society of London, A120, 423–437.Google Scholar
Debye, P. (1912). Zur theorie der spezifischen wärme (On the theory of specific heats), Annalen der Physik (4), 39, 789–839. English translation: Collected Papers of PeterGoogle Scholar
J. W., Debye, 1954, pp. 650–696. New York: Interscience.
Dee, P. I. and Walton, E. T. S. (1933). A photographic investigation of the transmutation of lithium and boron by protons and of lithium by ions of the heavy isotope of hydrogen, Proceedings of the Royal Society of London, A141, 733–742.Google Scholar
De Forest, L. (1906). The audion: A new receiver for wireless telegraphy, Transactions of the American Institute of Electrical and Electronic Engineers, 25, 735–763.Google Scholar
de Gennes, P.-G. (1966). Superconductivity of Metals and Alloys. New York: Addison- Wesley.
de Gennes, P.-G. (1971). Reptation of a polymer chain in the presence of fixed obstacles, Journal of Chemical Physics, 55, 572–579.Google Scholar
de Haas, W. J. and van Alphen, P. M. (1931). The dependence of the susceptibility of diamagnetic metals upon the field, Leiden Communications, 212a, 3–16.Google Scholar
Deltrap, J. H. M. (1964a). Correction of spherical aberration of electron lenses. PhD dissertation, University of Cambridge.
Deltrap, J. H. M. (1964b). Correction of spherical aberration with combined quadrupole– octopole units, in Proceedings of the 3rd European Conference on Electron Microscopy, Prague, Czech Republic, ed. Titlbach, M., volume A, pp. 45–46. Prague: Czechoslovak Academy of Sciences.
Désirant, M. and Shoenberg, D. (1948). The intermediate state of superconductors, I: Magnetization of superconducting cylinders in transverse magnetic fields, Royal Society of London Proceedings, Series A, 194, 63–79.Google Scholar
De Young, D. S. and Axford, W. I. (1967). Inertial confinement of extended radio sources, Nature, 216, 129–131.Google Scholar
Dickenson, H. W. (1958). The steam engine to 1830, in A History of Technology, Vol. IV, eds Singer, L. C., Holmyard, E. J., Hall, A., and Williams, T. I., pp. 168–198. Oxford: Clarendon Press. The quotation from Henderson appears on page 165.
Dickinson, C., Battye, R. A., Carreira, P. et al. (2004). High-sensitivity measurements of the cosmic microwave background power spectrum with the extended Very Small Array, Monthly Notices of the Royal Astronomical Society, 353, 732–746.Google Scholar
Dirac, P. A. M. (1925). The fundamental equations of quantum mechanics, Proceedings of the Royal Society of London, A109, 642–653.Google Scholar
Dirac, P. A. M. (1928a). The quantum theory of the electron, Proceedings of the Royal Society of London, A117, 610–624.Google Scholar
Dirac, P. A. M. (1928b). The quantum theory of the electron, Proceedings of the Royal Society of London, A118, 351–361.Google Scholar
Dirac, P. A. M. (1930). Principles of Quantum Mechanics. Oxford: Clarendon Press.
Dirac, P. A. M. (1931). Quantized singularities in the electromagnetic field, Proceedings of the Royal Society of London, A133, 60–72.Google Scholar
Dirac, P. A. M. (1939). A new notation for quantum mechanics, Proceedings of the Cambridge Philosophical Society, 35, 416–418.Google Scholar
Dirac, P. A. M. (1984). Blackett and the positron, in Cambridge Physics in the Thirties, ed. Hendry, J., pp. 61–62. Bristol: Adam Hilger.
Dodson, G. (2002). Dorothy Mary Crowfoot Hodgkin, Biographical Memoirs of Fellows of the Royal Society, 48, 179–219.Google Scholar
Doi, M. and Edwards, S. F. (1978a). Dynamics of concentrated polymer systems, I: Brownian motion in equilibrim state, Journal of the Chemical Society, Faraday Transactions II, 74, 1789–1801.Google Scholar
Doi, M. and Edwards, S. F. (1978b). Dynamics of concentrated polymer systems, II:Molecular motion under flow, Journal of the Chemical Society, Faraday Transactions II, 74, 1802–1817.Google Scholar
Doi, M. and Edwards, S. F. (1978c). Dynamics of concentrated polymer systems, III: The constitutive equation, Journal of the Chemical Society, Faraday Transactions II, 74, 1818–1832.Google Scholar
Doi, M. and Edwards, S. F. (1979). Dynamics of concentrated polymer systems, IV: Rheological properties, Journal of the Chemical Society, Faraday Transactions II, 75, 38–54.Google Scholar
Doi, M. and Edwards, S. F. (1986). The Theory of Polymer Dynamics. Oxford: Clarendon Press.
Donald, A. M. (1994). Physics of foodstuffs, Reports on Progress in Physics, 57, 1081–1135.Google Scholar
Donald, A. M. (2015). On the Loss of a Giant. http://occamstypewriter.org/athenedonald/2015/05/09/on-the-loss-of-a-giant/.
Duke, T. and Jülicher, F. (2003). Active traveling wave in the cochlea, Physical Review Letters, 90(15), 158101 1–4.Google Scholar
Dyson, F. (1999).Why is Maxwell's theory so hard to understand?, in James Clerk Maxwell Commemorative Booklet, pp. 8–13. Edinburgh: James Clerk Maxwell Foundation.
Eddington, A. (1920). The internal constitution of the stars, Observatory, 43, 341–358.Google Scholar
Eden, R. J. (2012). Sometimes in Cambridge: Memoirs. Cambridge: Clare Hall in the Univiersity of Cambridge.
Eden, R. J., Landshoff, P. V., Olive, D. I., and Polkinghorne, J. C. (1966). The Analytic S-Matrix. Cambridge: Cambridge University Press.
Edge, D. O., Shakeshaft, J. R., McAdam, W. B., Baldwin, J. E., and Archer, S. (1959). A survey of radio sources at a frequency of 159 Mc/s, Memoirs of the Royal Astronomical Society, 68, 37–60.Google Scholar
Edlén, B. (1941). An attempt to identify the emission lines in the spectrum of the solar corona, Arkiv för Matematik, Astronomi och Fysik, 28B, 1–4. Also published as The interpretation of the emission line spectrum of the solar corona, Zeitschrift für Astrophysik, 22, 30–64, 1942.Google Scholar
Edwards, S. F. (1958). A new method for the evaluation of electric conductivity in metals, Philosophical Magazine, 3, 1020–1031.Google Scholar
Edwards, S. F. (1964). The statistical dynamics of homogeneous turbulence, Journal of Fluid Dynamics, 18, 239–273.Google Scholar
Edwards, S. F (1965). The statistical mechanics of polymers with excluded volume, Proceedings of the Physical Society of London, 85, 613–624.Google Scholar
Edwards, S. F (1966). The theory of polymer solutions at intermediate concentration, Proceedings of the Physical Society of London, 88, 265–280.Google Scholar
Edwards, S. F (1968). Statistical mechanics with topological constraints, II, Journal of Physics, A1, 15–28.Google Scholar
Edwards, S. F and Anderson, P. W. (1975). Theory of spin glasses, Journal of Physics F: Metal Physics, 5, 965–974.Google Scholar
Edwards, S. F and Anderson, P. W. (1976). Theory of spin glasses, II, Journal of Physics F: Metal Physics, 6, 1927–1937.Google Scholar
Ehrler, B., Wilson, M. W. B., Rao, A., H., Friend, R. H., and Greenham, N. C. (2012). Singlet exciton fission-sensitized infrared quantum dot solar cells, Nano Letters, 12, 1053–1057.Google Scholar
Einstein, A. (1905). Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt (On a heuristic point of view concerning the production and transformation of light), Annalen der Physik (4), 17, 132–148.Google Scholar
Einstein, A. (1906). Die plancksche theorie der strahlung und die theorie der spezifischen wärme, Annalen der Physik (4), 22, 180–190.Google Scholar
Einstein, A. (1924). Quantentheorie des einatomigen idealen gases, I, Sitzungberichte der (Kgl.) Preussischen Akademie der Wissenschaften (Berlin), pp. 261–267.Google Scholar
Einstein, A. (1925). Quantentheorie des einatomigen idealen gases, II, Sitzungberichte der (Kgl.) Preussischen Akademie der Wissenschaften (Berlin), pp. 3–14.Google Scholar
Einstein, A. (1931). Maxwell's influence on the development of the conception of physical reality, in James Clerk Maxwell, A Commemorative Volume 1831–1931, pp. 66–73. Cambridge: Cambridge University Press.
Eldredge, K. R. and Tabor, D. (1955). The mechanism of rolling friction, I: The plastic range, Proceedings of the Royal Society of London, A229, 181–198.Google Scholar
Ellinger, S., Graham, K. R., Shi, P. et al. (2011). Donor–acceptor–donor-based Π conjugated oligomers for nonlinear optics and near-IR emission, Chemistry ofMaterials, 23(17), 3805–3817.Google Scholar
Ellis, C. D. and Mott, N. F. (1933). Energy relations in the β-type of radioactive disintegration, Proceedings of the Royal Society of London, A141, 502–511.Google Scholar
Ellis, C. D. and Wooster, W. A. (1927). The average energy of disintegration of radium E, Proceedings of the Royal Society of London, A117, 109–123.Google Scholar
Elsmore, B. and Mackay, C. D. (1969). Observations of the structure of radio sources in the 3C catalogue, III: The absolute determination of positions of 78 compact sources, Monthly Notices of the Royal Astronomical Society, 146, 361–379.Google Scholar
Epstein, P. S. (1916). Zur theorie des Starkeffektes (On the theory of the Stark effect), Annalen der Physik (4), 50, 489–520.Google Scholar
Eve, A. S. (1939). Rutherford: Being the Life and Letters of the Rt. Hon. Lord Rutherford, O. M. Cambridge: Cambridge University Press.
Eve, A. S. and Chadwick, J. (1938). Lord Rutherford, 1871–1937, Obituary Notices of Fellows of the Royal Society, Vol. 2, 6, 394–423.Google Scholar
Ewald, P. P. (1962). Fifty Years of X-ray Diffraction. Utrecht: N.V. A. Oosthoek's Uitgeversmaatschappij. This volume was edited by Ewald. It includes articles by and biographies of many of the pioneers of X-ray spectroscopy.
Faber, T. E. (1949). Creation and growth of superconducting nuclei, Nature, 164, 277–278.Google Scholar
Faber, T. E. (1952). The phase transition in superconductors, I: Nucleation, Royal Society of London Proceedings, Series A, 214, 392–412.Google Scholar
Faber, T. E. (1972). Introduction to the Theory of Liquid Metals. Cambridge: Cambridge University Press.
Faber, T. E. (1995). Fluid Dynamics for Physicists. Cambridge: Cambridge University Press.
Fabian, A. C., Sanders, J. S., Ettori, S. et al. (2000). Chandra imaging of the complex Xray core of the Perseus cluster, Monthly Notices of the Royal Astronomical Society, 318, L65–L68.Google Scholar
Falconer, I. (1988). J.J. Thomson's work on positive rays, 1906–1914, Historical Studies in the Physical and Biological Sciences, 18, 265–310.Google Scholar
Falconer, I. (1989). J.J. Thomson and ‘Cavendish physics’, in The Development of the Laboratory, ed. James, F. A. J. L., pp. 104–117. London: Macmillan.
Falconer, I. (2014). Maxwell and building the Cavendish Laboratory, in James Clerk Maxwell, eds Flood, R., McCartney, M., and Whitaker, A., pp. 67–98. Oxford: Oxford University Press.
Fanaroff, B. L. and Riley, J. M. (1974). The morphology of extragalactic radio sources of high and low luminosity, Monthly Notices of the Royal Astronomical Society, 167, 31–36P.Google Scholar
Fang, D., Kurebayashi, H., Wunderlich, J. et al. (2011). Spin-orbit-driven ferromagnetic resonance, Nature Nanotechnology, 6, 413–417.Google Scholar
Faraday, M. (1846). Thoughts on ray-vibrations, Faraday's Researches in Electricity, 3, 447–452.Google Scholar
This letter was first published in the Philosophical Magazine (3), 53, 345–350, 1846, following his lecture at the Royal Institution in April 1846.
Feather, N. (1932). The collisions of neutrons with nitrogen nuclei, Proceedings of the Royal Society of London, A136, 709–727.Google Scholar
Feather, N. (1984). The experimental discovery of the neutron, in Cambridge Physics in the Thirties, ed. Hendry, J., pp. 31–41. Bristol: Adam Hilger.
Fermi, E. (1934). Versuch einer theorie der β;-strahlen, I, Zeitschrift fur Physik, 88, 161– 177.Google Scholar
Fermi, E., Amaldi, E., D'Agostino, O., Rasetti, F., and Segrè, E. (1934). Radioattivitá provocata da bombardamento di neutroni, III, La Recherca Scientifica, 5, 452–453.Google Scholar
Feynman, R. (1955). Applications of quantum mechanics to liquid helium, Progress in Low Temperature Physics, 1, 17–53.Google Scholar
Field, J. E. (1971). Brittle fracture: Its study and application, Contemporary Physics, 12, 1–31.Google Scholar
Field, J. E. (1983). High-speed photography, Contemporary Physics, 24, 439–459.Google Scholar
Fink, T. and Mao, Y. (1999). The 85 Ways to Tie a Tie: The Science and Aesthetics of Tie Knots. London: Fourth Estate.
Finkelstein, A. and Shattock, M. (2001). CAPSA and its implementation: Report to the Audit Committee and the Board of Scrutiny, Cambridge University Reporter, 132, 153–208.
Fitzpatrick, T. C. and Whetham, W. C. D. (1910). The building of the Laboratory, in A History of the Cavendish Laboratory, 1871–1910, pp. 1–13. London: Longmans, Green and Co.
Fitzpatrick, T. C., Whetham, W. C. D., Schuster, A. et al., eds (1910). A History of the Cavendish Laboratory, 1871–1910. London: Longmans, Green and Co.
Forbes, R. J. (1958). Power to 1850, in A History of Technology, Vol. 4, eds Singer, C., Holmyard, E. J., Hall, A. R., and Williams, T. I., pp. 148–167. Oxford: Clarendon Press. The quotation is on page 165.
Forfar, D. (1995). What became of the Senior Wranglers?, Mathematical Spectrum, 29, 1–4.Google Scholar
Foucault, L. (1849). Lumière èlectrique (Electric light), L'Institut, Journal Universal des Sciences, 17, 44–46.Google Scholar
Fourier, J. B. J. (1822). Thèorie Analytique de la Chaleur (Analytical Theory of Heat). Paris: Firmin Didot Pre et fils.
Franklin, R. E. and Gosling, R. G. (1953a). Evidence for 2-chain helix in crystalline structure of sodium desoxyribonucleate, Nature, 172, 156–157.Google Scholar
Franklin, R. E. and Gosling, R. G. (1953b). Molecular configuration in sodium thymonucleate, Nature, 171, 740–741.Google Scholar
Franklin, R. E. and Gosling, R. G. (1953c). The structure of sodium thymonucleate fibres, I: The influence of water content, Acta Crystallographica, 6, 673–677.Google Scholar
Franklin, R. E. and Gosling, R. G. (1953e). The structure of sodium thymonucleate fibres, III: The three-dimensional Patterson function, Acta Crystallographica, 8, 151–156.Google Scholar
Fraunhofer, J. (1817a). Bestimmung des brechungs- und des farbenzerstreuungsvermögens verschiedener glasarten, in bezug auf die vervollkommnung achromatischer fernröhre (On the refractive and dispersive power of different species of glass in reference to the improvement of achromatic telescopes, with an account of the lines or streaks which cross the spectrum), Denkschriften der Königlichen Akademie der Wissenschaften zu München, 5, 193–226. Translation: Edinburgh Philosophical Journal, 9, pp. 288–299, 1823; 10, pp. 26-40, 1824.Google Scholar
Fraunhofer, J. (1817b). Bestimmung des brechungs- und des farbenzerstreuungsvermögens verschiedener glasarten, in bezug auf die vervollkommnung achromatischer fernröhre (On the refractive and dispersive power of different species of glass in reference to the improvement of achromatic telescopes, with an account of the lines or streaks which cross the spectrum), Gilberts Annalen der Physik (1), 56, 264– 313.Google Scholar
Fraunhofer, J. (1821). Neue modifikation des lichtes durch gegenseitige einwirkung und beugung der strahlen, und gesetze derselben, Denkschriften der Königlichen Akademie der Wissenschaften zu München, 8, 1–76.Google Scholar
Friedrich, W., Knipping, P., and Laue, M. von. (1912). Interferenz-erscheinungen bei Röntgenstrahlen (Interference effects with Röntgen rays), Sitzberichte der Königlich Bayerischen Akademie der Wissenschaften, pp. 303–312.Google Scholar
Friend, R. H. (2008). Richard Friend interviewed by Alan Macfarlane. http://www.sms. cam.ac.uk/media/1116837. Google Scholar
Frisch, O. (1974). Nuclear physics in the modern Cavendish, in A Hundred Years of Cambridge Physics, ed. Moralee, D., pp. 39–41. Cambridge: Cavendish Laboratory. The second and third editions were published in 1980 (ed. Parker, J.) and 1995 (eds. Jacques, G. and Bache, I.) with the title A Hundred Years and More of Cambridge Physics. See also http://www.phy.cam.ac.uk/history/years/nuclearphys. Google Scholar
Frisch, O., ed. (1980). What Little I Remember. Cambridge: Cambridge University Press.
Fröhlich, H. (1950). Theory of the superconducting state, I: The ground state at the absolute zero of temperature, Physical Review, 79, 845–856.Google Scholar
Fujii, Y. (1971). Dilaton and possible non-Newtonian gravity, Nature Physical Sciences, 234, 5–7.Google Scholar
Fujii, Y. (1972). Scale invariance and gravity of hadrons, Annals of Physics, 69, 494–521.Google Scholar
Galvani, L. (1791). De viribus electricitatis in motu musculari commentarius, De Bononiensi Scientiarum et Artium Institute atque Academia Commentarii, 7, 363–418.Google Scholar
Gamow, G. (1928). Zur quantentheorie des atomkernes, Zeitschrift für Physik, 51, 204– 212.Google Scholar
Geiger, H. and Marsden, E. (1909). On a diffuse reflection of the α-particles, Proceedings of the Royal Society of London, A82, 495–500.Google Scholar
Geiger, H. and Marsden, E. (1913). The laws of deflexion of α-particles through large angles, Philosophical Magazine (6), 25, 604–623.Google Scholar
Geiger, H. and Müller, W. (1928). Das electronenzählrohr (The electron-counting tube), Physikalische Zeitschrift, 29, 839–841.Google Scholar
Geiger, H. and Müller, W. (1929). Technische bermerkungen zum electronenzählrohr (Technical remarks on the electron-counting tube), Physikalische Zeitschrift, 30, 489– 493.Google Scholar
Geiger, H. and Nuttall, J. M. (1911). The ranges of the α-particles from various radioactive substances and a relation between range and period of transformation, Philosophical Magazine (6), 22, 613–621.Google Scholar
Geikie, A. (1918). Memoir of John Michell. Cambridge: Cambridge University Press.
Gerchberg, R. W. and Saxton, W. O. (1972). A practical algorithm for the determination of the phase from image and diffraction plane pictures, Optik, 35, 237–246.Google Scholar
Gerlach, W. and Stern, O. (1922). Der experimentelle nachweis der richtungsquantelung im magnetfeld, Zeitschrift für Physik, 9, 349–352.Google Scholar
Giaever, I. (1960a). Electron tunneling between two superconductors, Physical Review Letters, 5, 464–466.Google Scholar
Giaever, I. (1960b). Energy gap in superconductors measured by electron tunneling, Physical Review Letters, 5, 147–148.Google Scholar
Gillies, G. T. (1997). The Newtonian gravitational constant: Recent measurements and related studies, Reports on Progress in Physics, 60(2), 151–225.Google Scholar
Ginzburg, V. L. (1951). Cosmic rays as a source of galactic radio-radiation, Doklady Akademiya Nauk SSSR, 76, 377–380.Google Scholar
Ginzburg, V. L. and Landau, L. D. (1950). On the theory of superconductivity (in Russian), Zhurnal Experimentalnoi i Teoreticheskikh Fizika, 20, 1064–1082.Google Scholar
Glazebrook, R. T. (1882). On the refraction of plane polarised light at the surface of a uniaxial crystal, Philosophical Transactions of the Royal Society of London, 173, 595–620.Google Scholar
Glazebrook, R. T. (1910). Lord Rayleigh's professorship, in A History of the Cavendish Laboratory, 1871–1910, pp. 40–74. London: Longmans, Green and Co.
Glazebrook, R. T. and Shaw, W. (1885). Practical Physics. London: Longmans, Green and Co. This volume ran to many subsequent editions.
Glazebrook, R. T., Dodds, J. M., and Sargant, E. B. (1883). IV. Experiments on the value of the British Association unit of resistance, Philosophical Transactions of the Royal Society of London, 174, 223–268.Google Scholar
Gleick, J. (1988). Chaos: Making a New Science. London: William Heinemann.
Gold, T. (1968). Rotating neutron stars as the origin of the pulsating radio sources, Nature, 218, 731–732.Google Scholar
Goldbart, P., Goldenfeld, N., and Sherrington, D., eds (2004). Stealing the Gold: A Celebration of the Pioneering Physics of Sam Edwards, volume 126 of International Series of Monographs on Physics. Oxford: Clarendon Press.
Goldstein, E. (1886). Über eine noch nicht untersuchte strahlungsform an der kathodeinducirter entladungen, Berlin Monatsberichte II, 691–699.Google Scholar
Gorter, C. J. and Casimir, H. (1934). On supraconductivity, I, Physica, 1, 306–320. Also published in Physikalische Zeitung, 35, 963, 1934.Google Scholar
Gower, J. F. R. (1966). The source counts from the 4C survey, Monthly Notices of the Royal Astronomical Society, 133, 151–161.Google Scholar
Gower, J. F. R., Scott, P. F., and Wills, D. (1967). A survey of radio sources in the declination ranges −07◦ to 20◦ and 40◦ to 80◦, Memoirs of the Royal Astronomical Society, 71, 49– 144.Google Scholar
Gowing, M. (1964). Britain and Atomic Energy, 1935–1945. London: Macmillan.
Graham-Smith, F. (1951). An accurate determination of the positions of four radio stars, Nature, 168, 555.Google Scholar
Graham-Smith, F. (1986). Martin Ryle, Biographical Memoirs of Fellow of The Royal Society of London, 32, 496–524.Google Scholar
Gray, K. E., Long, A. R., and Adkins, C. J. (1969). Measurements of the lifetime of excitations in superconducting aluminium, Philosophical Magazine, 20, 273– 278.Google Scholar
Greenstein, J. L. and Matthews, T. A. (1963). Redshift of the radio source 3C 48, Astronomical Journal, 68, 279.Google Scholar
Greenwood, J. A., Minshall, H., and Tabor, D. (1960). Hysteresis losses in rolling and sliding friction, Proceedings of the Royal Society of London, A259, 480–507.Google Scholar
Greinacher, H. (1926). Eine neue methode zur messung elemenarstrahlen, Zeitschrift für Physik, 36, 364–373.Google Scholar
Greinacher, H. (1927). Über die registrierung von α- und H-strahlen nach der neuen elektrischen zählmethode, Zeitschrift für Physik, 44, 319–325.Google Scholar
Griffin, A. (2008). Superfluidity: Three people, two papers, one prize, Physics World, August 2008, 27–30.
Grotrian, W. (1939). Zur frage der deutung der linien im spektrum der sonnenkorona, Naturwissenschaften, 27, 214.Google Scholar
Gull, S. F. and Daniell, G. J. (1978). Image reconstruction from incomplete and noisy data, Nature, 272, 686–690.Google Scholar
Gull, S. F. and Northover, K. J. E. (1973). Bubble model of extragalactic radio sources, Nature, 244, 80–83.Google Scholar
Gunn, J. E. and Ostriker, J. P. (1969). Acceleration of high-energy cosmic rays by pulsars, Physical Review Letters, 22, 728–731.Google Scholar
Gunn, J. E., Hoessel, J. G.,Westphal, J. A., Perryman, M. A. C., and Longair, M. S. (1981). Investigations of the optical fields of 3CR radio sources to faint limiting magnitudes, IV, Monthly Notices of the Royal Astronomical Society, 194, 111–123.Google Scholar
Gurney, R. W. and Condon, E. U. (1928). Quantum mechanics and radioactive disintegration, Nature, 122, 439.Google Scholar
Gurney, R. W. and Condon, E. U. (1929). Quantum mechanics and radioactive disintegration, Physical Review, 33, 127–140.Google Scholar
Haas, A. E. (1910a). Der zusammenhang des Planckschen elementaren wirkungsquantums mit den grundgrössen der elektronentherorie, Jahrbuch der Radioaktivität und Elektronik, 7, 261–268.Google Scholar
Haas, A. E. (1910b). Über die electrodynamische bedeutung des Plankschen strahlungsgesetzes und über eine neue bestimmung des elektrischen elementarquantums unde der dimensionen des wasserstoffatoms, Sitzberichte der Kaiserlichen Akademie der Wissenschaften (Wien). Abteilung II, 119, 119–144.Google Scholar
Haas, A. E. (1910c). Über eine neue theoretische methode zur bestimmung des elektrischen elementarquantums unde des halbmessers des wasserstoffatoms, Physikalische Zeitschrift, 11, 537–538.Google Scholar
Hahn, O. and Strassmann, F. (1939). Über den nachweis und das verhalten der bei der bestrahlung des urans mittels neutronen entstehenden erdalkalimetalle, Naturwissenschaften, 27, 11–15.Google Scholar
Hales, S. E. G., Riley, J. M., Waldram, E. M., Warner, P. J., and Baldwin, J. E. (2007). A final non-redundant catalogue for the 7C 151-MHz survey, Monthly Notices of the Royal Astronomical Society, 382, 1639–1642.Google Scholar
Hall, H. E. (1957). The angular acceleration of liquid helium II, Philosophical Transactions of the Royal Society of London, A250, 359–385.Google Scholar
Hall, H. E. and Vinen, W. F. (1956a). The rotation of liquid helium II, I: Experimnets on the propagation of second sound in uniformly rotating helium II, Proceedings of the Royal Society of London, A238, 204–214.Google Scholar
Hall, H. E. and Vinen, W. F. (1956b). The rotation of liquid helium II, II: The theory of mutual friction in uniformly rotating helium II, Proceedings of the Royal Society of London, A238, 215–234.Google Scholar
Haniff, C. A., Mackay, C. D., Titterington, D. J., Sivia, D., and Baldwin, J. E. (1987). The first images from optical aperture synthesis, Nature, 328, 694–696.Google Scholar
Hargrave, P. J. and Ryle, M. (1974). Observations of Cygnus A with the 5 km radio telescope, Monthly Notices of the Royal Astronomical Society, 166, 305–327.Google Scholar
Harman, P. (1990). The Scientific Letters and Papers of James Clerk Maxwell. Volume I, 1846-1862. Cambridge: Cambridge University Press.
Harman, P. (1995). The Scientific Letters and Papers of James Clerk Maxwell. Volume II, 1862-1873. Cambridge: Cambridge University Press.
Harman, P. (1998). The Natural Philosophy of James Clerk Maxwell. Cambridge: Cambridge University Press.
Harman, P. (2002). The Scientific Letters and Papers of James Clerk Maxwell. Volume III, 1874-1879. Cambridge: Cambridge University Press.
Harrison, W. A. (1958). Cellular method for wave functions in imperfect metal lattices, Physical Review, 110, 14–25.Google Scholar
Hartree, D. R. (1929). The propagation of electromagnetic waves in stratified media, Mathematical Proceedings of the Cambridge Philosophical Society, 25, 97–120.Google Scholar
Hartree, D. R. (1957). The Calculation of Atomic Structures. New York: John Wiley & Sons.
Haselgrove, C. B. and Hoyle, F. (1956). A mathematical discussion of the problem of stellar evolution, with reference to the use of an automatic digital computer, Monthly Notices of the Royal Astronomical Society, 116, 515–526.Google Scholar
Hawkes, P.W. (2009). Aberration corrections past and present, Philosophical Transactions of the Royal Society of London, A367, 3637–3664.Google Scholar
Haydock, R. and Nex, C. M. M. (1984). Comparison of quadrature and termination for estimating the density of states within the recursion method, Journal of Physics C: Solid State Physics, 17, 4783–4789.Google Scholar
Hazard, C., Mackey, M. B., and Shimmins, A. J. (1963). Investigation of the radio source 3C 273 by the method of lunar occultations, Nature, 197, 1037–1039.Google Scholar
Heaviside, O. (1902). The theory of electric telegraphy, Encyclopaedia Britannica, tenth edition. This article was commissioned by the Encyclopaedia Britannica for its tenth edition. The article was reprinted in volume 3 of Heaviside's Electromagnetic Theory, pp. 331–346 (London: ‘The Electrician’ Printing and Publishing Company).
Hedgeland, H., Fouquet, P., Jardine, A. P. et al. (2009). Measurement of single-molecule frictional dissipation in a prototypical nanoscale system, Nature Physics, 5, 561– 564. Google Scholar
Heilbron, J. L. (1970). Joseph John Thomson, in Dictionary of Scientific Biography, volume 13, pp. 362–372. New York: Charles Scribner's Sons.
Heilbron, J. L. (1977). Lectures on the history of atomic physics 1900–1922,in History of Twentieth Century Physics: 57th Varenna International School of Physics, ‘Enrico Fermi’, ed. Weiner, C., pp. 40–108. New York and London: Academic Press.
Heilbron, J. L. and Seidel, R. W. (1989). Lawrence and His Laboratory: A History of the Lawrence Radiation Laboratory. Berkeley: University of California Press.
Heine, V. (2015). TCM Group History. http://www.tcm.phy.cam.ac.uk/about/history.
Heine, V. (1970). The pseudopotential concept, Solid State Physics, 24, 1–36 Google Scholar
Heisenberg, W. (1925). Über quanten theoretische umdeutung kinematischer und mechanischer beziehungen (Quantum-theoretical re-interpretation of kinematic and mechanical relations), Zeitschrift für Physik, 33, 879–893.Google Scholar
Heisenberg, W. (1927). Über den anschaulichen Inhalt der quantentheoretischen kinematik und mechanik, Zeitschrift für Physik, 43, 172–198. An English translation is included in the volume Quantum Theory and Measurement, eds. Wheeler, J. A. and Zurek, W. H., pp. 62–84, Princeton: Princeton University Press, 1983.
Hendry, J. (1984). Introduction to Part 3, Underlying themes, in Cambridge Physics in the Thirties, ed. Hendry, J., pp. 103–124. Bristol: Adam Hilger.
Henyey, L. G. and Keenan, P. C. (1940). Interstellar radiation from free electrons and hydrogen atoms, Astrophysical Journal, 91, 625–630.Google Scholar
Hertz, H. (1893). Electric Waves. London: Macmillan. The original book, Untersuchungen über die Ausbreitung der elektrischen Kraft, was published by Johann Ambrosius Barth in Leipzig in 1892.
Hess, V. F. (1913). Über beobachtungen der durchdringenden strahlung bei sieben freiballonfahrten (Concerning observations of penetrating radiation on seven free balloon flights), Physikalische Zeitschrift, 13, 1084–1091.Google Scholar
Hevesy, G. (1948). Francis William Aston, 1877–1945, Obituary Notices of Fellows of the Royal Society, Vol. 5, 5, 634–650.Google Scholar
Hewish, A. (1951). The diffraction of radio waves in passing through a phase-changing ionosphere, Proceedings of the Royal Society of London, A209, 81–96.Google Scholar
Hewish, A. (1955). The irregular structure of the outer regions of the solar corona, Proceedings of the Royal Society of London, A228, 238–251.Google Scholar
Hewish, A., Bell, S., Pilkington, J., Scott, P., and Collins, R. (1968). Observations of a rapidly pulsating radio source, Nature, 217, 709–713.Google Scholar
Hewish, A., Scott, P. F., and Wills, D. (1964). Interplanetary scintillation of small diameter radio sources, Nature, 203, 1214–1217.Google Scholar
Hey, J. S. (1946). Solar radiations in the 4–6 metre radio wave-length band, Nature, 157, 47–48.Google Scholar
Hey, J. S., Parsons, S. J., and Phillips, J. W. (1946). Fluctuations in cosmic radiation at radio-frequencies, Nature, 158, 234.
Hirsch, P. B., Horne, R. W., and Whelan, M. J. (1956). LXVIII. Direct observations of the arrangement and motion of dislocations in aluminium, Philosophical Magazine, 1, 677–684.Google Scholar
Hirsch, P. B., Howie, A., Nicholson, R., Pashley, D.W., and Whelan, M. J. (1965). Electron Microscopy of Thin Crystals. London and Malabar, FL: Butterworths/Krieger. Second edition 1977.
Hirsch, P. B., Howie, A., and Whelan, M. J. (1960). A kinematical theory of diffraction contrast of electron transmission microscope images of dislocations and other defects, Philosophical Transactions of the Royal Society of London, A252, 499–529.Google Scholar
Hodgkin, D. M. C. (1980). John Desmond Bernal, Biographical Memoirs of Fellows of the Royal Society, 26, 17–84.Google Scholar
Holland, W. S., Robson, E. I., Gear, W. K. et al. (1999). SCUBA: A common-user submillimetre camera operating on the James Clerk Maxwell Telescope, Monthly Notices of the Royal Astronomical Society, 303, 659–672. Howell, T. F. and Shakeshaft, J. R. (1966).Measurement of the minimum cosmic background radiation at 20.7-cm wave-length, Nature, 210, 1318–1319.Google Scholar
Howell, T. F. and Shakeshaft, J. R. (1967). Spectrum of the 3◦ K cosmic microwave radiation, Nature, 216, 753–754.Google Scholar
Howie, A. (1960). The electrical resistivity of stacking faults, Philosophical Magazine, 5, 251–271.Google Scholar
Howie, A. (1979). Image contrast and localized signal selection techniques, Journal of Microscopy, 11–23.
Howie, A. and Whelan, M. J. (1961). Diffraction contrast of electron microscope images of crystal lattice defects, II: The development of a dynamical theory, Proceedings of the Royal Society of London, A263, 217–237.Google Scholar
Howie, A. and Whelan, M. J. (1962). Diffraction contrast of electron microscope images of crystal lattice defects, III: Results and experimental confirmation of the dynamical theory of dislocation image contrast, Proceedings of the Royal Society of London, A267, 206–230.Google Scholar
Hoyle, F. (1957). The Black Cloud. London: William Heinemann.
Huggins, M. L. (1943). The structure of fibrous proteins, Chemical Review, 32, 195–218.Google Scholar
Hughes, D. H., Serjeant, S., Dunlop, J. et al. (1998). High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey, Nature, 394, 241– 247.Google Scholar
Hughes, J. A. (1993). The radioactivitists: Community, controversy and the rise of nuclear physics. PhD dissertation, University of Cambridge.
Hunter, G. (2004). Light is a Messenger: The Life and Science of William Lawrence Bragg. Oxford: Oxford University Press.
Huygens, C. (1690).Treatise on Light. Leiden.
Israelachvili, J. N. and Tabor, D. (1972). The measurement of van Der Waals dispersion forces in the range 1.5 to 130 nm, Proceedings of the Royal Society of London, A331, 19–38.Google Scholar
Jaklevic, R. C., Lambe, J., Silver, A. H., and Mercereau, J. E. (1964). Quantum interference effects in Josephson tunneling, Physical Review Letters, 12, 159–160.Google Scholar
James, F. (2000). Guides to the Royal Institution of Great Britain, I: History. London: Royal Institution of Great Britain.
Jammer, M. (1989). The Conceptual Development of Quantum Mechanics, 2nd edition. New York: American Institute of Physics and Tomash Publishers. The first edition of Jammer's important book was published in 1966 by the McGraw-Hill Book Company in its International Series of Pure and Applied Physics. The 1989 edition is an enlarged and revised version of the first edition and I use this as the primary reference to Jammer's history.
Jansky, K. G. (1933). Electrical disturbances apparently of extraterrestrial origin, Proceedings of the Institution of Radio Engineers, 21, 1387–1398.Google Scholar
Jardine, A. P., Hedgeland, H., Alexandrowicz, G., Allison, W., and Ellis, J. (2009). Helium- 3 spin-echo: Principles and application to dynamics at surfaces, Progress in Surface Science, 84, 323–379.Google Scholar
Jenkins, C. J., Pooley, G. G., and Riley, J. M. (1977). Observations of 104 extragalactic radio sources with the Cambridge 5-km telescope at 5 GHz, Memoirs of the Royal Astronomical Society, 84, 61–99.Google Scholar
Jennison, R. C. and Das Gupta, M. K. (1953). Fine structure of the extra-terrestrial radio source Cygnus 1, Nature, 172, 996–997.Google Scholar
Jones, R. V. (1978). Most Secret War: British Scientific Intelligence 1939–1945. London: Hamish Hamilton. The revised edition has been published in paperback by Penguin.
Jones, R. V. (1981). Some consequences of physics, Nature, 293, 23–25.Google Scholar
Josephson, B. D. (1960). Temperature-dependent shift of γ rays emitted by a solid, Physical Review Letters, 4, 341–342.Google Scholar
Josephson, B. D. (1962). Possible new effects in superconductive tunnelling, Physics Letters, 1, 251–253.Google Scholar
Jungnickel, C. and McCormmach, R. (1986a). The Intellectual Mastery of Nature: Theoretical Physics from Ohm to Einstein, Vol. 1. The Torch of Mathematics, 1800 to 1870. Chicago: University of Chicago Press
Jungnickel, C. and McCormmach, R. (1986b). The Intellectual Mastery of Nature: Theoretical Physics from Ohm to Einstein, Vol. 2. The Now Mighty Theoretical Physics, 1870 to 1925. Chicago: University of Chicago Press.
Kamerlingh Onnes, H. (1911a). On the Change of Resistance of Pure Metals at Very Low Temperatures, etc. III. The Resistance of Platinum at Helium Temperatures. Communications of the Physical Laboratory of the University of Leiden, No. 119b.
Kamerlingh Onnes, H. (1911b). Further Experiments with Liquid Helium. D. On the Change of Electric Resistance of Pure Metals at Very Low Temperatures, etc. V. The Disappearance of the Resistance of Mercury. Communications of the Physical Laboratory of the University of Leiden, No. 122b.
Kapitsa, P. L. (1922). The loss of energy of an α-ray beam in its passage through matter, I: Passage through air and CO2, Proceedings of the Royal Society of London, A102, 48–71.Google Scholar
Kapitsa, P. L. (1923). Some observations on α-particle tracks in a magnetic field, Proceedings of the Cambridge Philosophical Society, 21, 511–516.Google Scholar
Kapitsa, P. L. (1924a). α-ray tracks in a strong magnetic field, Proceedings of the Royal Society of London, A106, 602–622.Google Scholar
Kapitsa, P. L. (1924b). A method of producing strong magnetic fields, Proceedings of the Royal Society of London, A105, 691–710.Google Scholar
Kapitsa, P. L. (1927). Further developments of the method of obtaining strong magnetic fields, Proceedings of the Royal Society of London, A115, 658–683.Google Scholar
Kapitsa, P. L. (1938). Viscosity of liquid helium below the λ-point, Nature, 141, 74.Google Scholar
Kapitsa, P. L. and Cockcroft, J. D. (1932). Hydrogen liquefaction plant at the Royal Society Mond Laboratory, Nature, 129, 224–226.Google Scholar
Kaufmann, W. (1902). Die elektromagnetische masse des elektrons, Physikalische Zeitschrift, 4, 54–56.Google Scholar
Keesom, W. H. and Keesom, A. P. (1936). On the heat conductivity of liquid helium, Physica, 3, 359–360.Google Scholar
Keesom, W. H. and van den Ende, J. N. (1930). The specific heats of solid substances at the temperatures attainable with the aid of liquid helium II: Measurements of the atomic heats of lead and of bismiuth, Proceedings of the Koniklijke Akadamie van Wetenschappen te Amsterdam, 33, 243–254. Leiden Communications No. 203.Google Scholar
Kelly, A. (2012). Lawrence Bragg's interest in the deformation of metals and 1950–1953 in the Cavendish: A worm's eye view, Acta Crystallographica, A69, 16–24.Google Scholar
Kendrew, J. C. (1990). Bragg's broomstick and the structure of proteins, in Selections and Reflections: The Legacy of Sir Lawrence Bragg, eds Thomas, J. M. and Phillips, D., pp. 88–91. Northwood, UK: Science Reviews.
Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., and Wyckoff, H. (1958). A threedimensional model of the myoglobin molecule obtained by X-ray analysis, Nature, 181, 662–666.Google Scholar
Kendrew, J. C., Dickerson, R. E., Strandberg, B. et al. (1960). Structure of myoglobin: 3-dimensional Fourier synthesis at 2°A resolution, Nature, 185, 422–427 Google Scholar
Kennedy, J. W., Seaborg, G. T., Segrè, E., and Wahl, A. C. (1946). Properties of 94(239), Physical Review, 70, 555–556.Google Scholar
Kennelly, A. E. (1902). On the elevation of the electrically-conducting strata of the Earth's atmosphere, Electrical World and Engineer, 39, 473.Google Scholar
Khmelnitskii, D. (2004). Impurity diagrammatics and the physics of disordered metals, in Stealing the Gold: A Celebration of the Pioneering Physics of Sam Edwards, eds Goldbart, P., Goldenfeld, N., and Sherrington, D., volume 126 of International Series of Monographs on Physics: pp. 23–29. Oxford: Clarendon Press.
Kiepenheuer, K. (1950). Cosmic rays as the source of general galactic radio emission, Physical Review, 79, 738–739 Google Scholar
Kinloch, A. J. (2000). Norman Adrian de Bruyne, Biographical Memoirs of Fellows of the Royal Society, 46, 127–143.Google Scholar
Kirchhoff, G. (1859). Ueber den zusammenhang zwischen emission und absorption von licht und wärme (On the connection between emission and absorption of light and heat), Berlin Monatsberichte, pp. 783–787.Google Scholar
Kirchhoff, G. (1861). Untersuchungen über das sonnenspektrum und die spectren der chemischen elemente (Investigations of the solar spectrum and the spectra of the chemical elements), Part 1, Abhandlungen der Königlich Preussischen Akademie der Wissenschaften zu Berlin, pp. 62–95.Google Scholar
Kirchhoff, G. (1862). Untersuchungen über das sonnenspektrum und die spectren der chemischen elemente (Investigations of the solar spectrum and the spectra of the chemical elements), Part 1 (continued), Abhandlungen der Königlich Preussischen Akademie der Wissenschaften zu Berlin, pp. 227–240.Google Scholar
Kirchhoff, G. (1863). Untersuchungen über das sonnenspektrum und die spectren der chemischen elemente (Investigations of the solar Spectrum and the spectra of the chemical elements), Part 2, Abhandlungen der Königlich Preussischen Akademie der Wissenschaften zu Berlin, pp. 225–240.Google Scholar
Kirsch, G. and Pettersson, H. (1923). Long-range particles from radium active deposit, Nature, 112, 394–395.Google Scholar
Kirsch, G. and Pettersson, H. (1926). Atomzertrümmerung (Atomic Fragmentation). Leipzig: Akademische Verlagsgesellschaft.Google Scholar
Kläui, M., Vaz, C. A. F., Lopez-Diaz, L., and Bland, J. A. C. (2003). Vortex formation in narrow ferromagnetic rings, Journal of Physics: Condensed Matter, 15, R985–R1023.Google Scholar
Klitzing, K. V., Dorda, G., and Pepper, M. (1980). New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Physical Review Letters, 45, 494–497.Google Scholar
Knoll, M. and Ruska, E. (1932a). Beitrag zur geometrischen Elektronenoptik I and II, Annalen der Physik (4), 12, 607–640 and 641–661.Google Scholar
Knoll, M. and Ruska, E. (1932b). Das elektronenmikroskop (The electron microscope), Zeitschrift für Physik, 78, 318–339.Google Scholar
Kohlrausch, W. (1870). Leitfaden der praktischen physik zunächst für das physikalische prakticum in Göttingen (An introduction to physical measurements). Leipzig: Teubner.
Kolhörster, W. (1913). Messungen der durchdringenden strahlung im freiballon in grösseren höhen (Measurements of penetrating radiation in free balloon flights at great altitudes), Physikalische Zeitschrift, 14, 1153–1156.Google Scholar
Kragh, H. (1996). Cosmology and Controversy: The Historical Development of Two Theories of the Universe. Princeton: Princeton University Press.
Krivanek, O. L., Dellby, N., and Brown, L. M. (1996). Spherical aberration corrector for a dedicated STEM, in Proceedings of the 11th European EM Congress, Dublin 1996, pp. 352–353. Brussels: CESEM.
Krivanek, O. L., Dellby, N., and Lupini, A. R. (1999). Towards sub-°A electron beams, Ultramicroscopy, 78, 1–11.Google Scholar
Krivanek, O. L., Dellby, N., Spence, A. J., Camps, R. A., and Brown, L. M. (1997a). Aberration correction in the STEM, in Institute of Physics Conference Series 153 (Proceedings of the 1997 EMAG Meeting), ed. Rodenburg, J., pp. 35–39. Bristol: IOP Publishing.
Krivanek, O. L., Dellby, N., Spence, A. J., Camps, R. A., and Brown, L. M. (1997b). Online aberrationmeasurement and correction in STEM, in Microscopy and Microanalysis: Proceedings of the 55th MSA Meeting, 3, 1171–1172. This paper appears in Suppl. 2 of this volume of Microscopy and Microanalysis.Google Scholar
Kuper, C. G. (1951). An unbranched laminar model of the intermediate state of superconductors, Philosophical Magazine (7), 42, 961–977.Google Scholar
Lagendijk, A., van Tiggelen, B., and Wiersma, D. S. (2009). Fifty years of Anderson localization, Physics Today, 62, 24–29.Google Scholar
Laing, R. A., Riley, J. M., and Longair, M. S. (1983). Bright radio sources at 178 MHz: Flux densities, optical identifications and the cosmological evolution of powerful radio galaxies, Monthly Notices of the Royal Astronomical Society, 204, 151–187.Google Scholar
Landau, L. D. (1930). Diamagnetismus der metalle, Zeitschrift für Physik, 64, 629–637.Google Scholar
Landau, L. D. (1941). The theory of superfluidity of helium II, Journal of Physics (Moscow), 5, 71–90.Google Scholar
Landé, A. (1919). Eine quantenregel für die räumliche orientierung von elektron-ringen, Verhandlungen der Deutschen Physikalischen Gesellschaft, 21, 585–588.Google Scholar
Langevin, P. and de Broglie, M. (1912). La Théorie du Rayonnement et les Quanta: Rapports et Discussions de la Réunion Tenue à Bruxelles, du 30 Octobre au 3 Novembre 1911. Paris: Gautier-Villars.
Laue, M. von (1912). Eine quantative prüfung der theorie für die interferenzerscheinungen bei Röntgenstrahlung (A quantitative test of the theory of X-ray interference phenomena), Sitzberichte der Königlich Bayerischen Akademie der Wissenschaften, pp. 363– 373.Google Scholar
Lauritsen, C. C. and Bennett, R. D. (1928). A new high potential X-ray tube, Physical Review, 32, 850–857.Google Scholar
Lawrence, E. O. and Livingston, M. S. (1931). The production of high speed protons without the use of high voltages, Physical Review, 38, 834.Google Scholar
Lawrence, E. O. and Sloan, D. H. (1931). The production of high speed canal rays without the use of high voltages, Proceedings of the National Academy of Sciences of the United States of America, 17, 64–70.Google Scholar
Lawrence, E. O., Alvarez, L. W., Brobeck, W. M. et al. (1939). Initial performance of the 60-inch cyclotron of the William H. Crocker Radiation Laboratory, University of California, Physical Review, 56, 124.Google Scholar
Lechner, B. A. J., de Wijn, A. S., Hedgeland, H. et al. (2013). Atomic scale friction of molecular adsorbates during diffusion, Journal of Chemical Physics, 138, 194710.Google Scholar
Leggett, A. J. (1995). Superfluids and superconductors, in Twentieth Century Physics, Vol. II, eds Brown, L. M., Pais, A., and Pippard, A. B., pp. 913–966. Bristol and Philadelphia: Institute of Physics Publishing, and New York: American Institute of Physics Press.
Lenz, E. (1834). Über die bestimmung der richtung durch elektodyanamische vertheilung erregten galvanischen ströme, Annalen der Physik (2), 31, 483–483.Google Scholar
Lewis, W. B. (1984). The development of electrical counting methods in the Cavendish, in Cambridge Physics in the Thirties, ed. Hendry, J., pp. 133–136. Bristol: Adam Hilger.
Lilly, S. J. and Longair, M. S. (1984). Stellar populations in distant radio galaxies, Monthly Notices of the Royal Astronomical Society, 211, 833–855.Google Scholar
Lindsay, R. B. (1970). Lord Rayleigh, the Man and His Works. Oxford and New York: Pergamon Press.
Little, L. T. and Hewish, A. (1966). Interplanetary scintillation and its relation to the angular structure of radio sources, Monthly Notices of the Royal Astronomical Society, 134, 221–237.Google Scholar
Lockyer, N. (1874a). Editorial, Nature, 9, 298.Google Scholar
Lockyer, N. (1874b). The new physical laboratory of the University of Cambridge, Nature, 10, 139–142.Google Scholar
London, F. (1938). On the Bose–Einstein condensation, Physical Review, 54, 947–954.Google Scholar
London, F. (1950). Superfluids, I: Macroscopic Theory of Superconductivity. New York: John Wiley & Sons; London: Chapman & Hall.
London, F. (1954). Superfluids, II: Macroscopic Theory of Superfluid Helium. New York: John Wiley & Sons.
London, F. and London, H. (1935a). The electromagnetic equations of the supraconductor, Proceedings of the Royal Society of London, A149, 71–88.Google Scholar
London, F. and London, H. (1935b). Supraleitung und diamagnetismus, Physica, 2, 341–354.Google Scholar
London, H. (1940). The high-frequency resistance of superconducting tin, Nature, 141, 643–644.Google Scholar
Long, A. and Adkins, C. (1973). Transfer characteristics of phonon-coupled superconducting tunnel junctions, Philosophical Magazine, 27, 865–882.Google Scholar
Longair, M. S. (1965). Objects in the fields of 88 radio sources, Monthly Notices of the Royal Astronomical Society, 129, 419–436.Google Scholar
Longair, M. S. (1966). On the interpretation of radio source counts, Monthly Notices of the Royal Astronomical Society, 133, 421–436.Google Scholar
Longair, M. S. (1971). Observational cosmology, Reports of Progress in Physics, 34, 1125–1248.Google Scholar
Longair, M. S. (1974). The counts of radio sources, in Confrontation of Cosmological Theories with Observational Data, ed. Longair, M. S., volume 63 of IAU Symposium, pp. 93–108. Dordrecht: D. Reidel.
Longair, M. S. (1999). The 3CR sample: 1962–1999, in The Hy-Redshift Universe: Galaxy Formation and Evolution at High Redshift, eds Bunker, A. J. and van Breugel, W. J. M., volume 193 of Astronomical Society of the Pacific Conference Series, pp. 11–22. San Francisco: Astronomical Society of the Pacific Publications.
Longair, M. S. (2003). Theoretical Concepts in Physics: An Alternative View of Theoretical Reasoning in Physics. Cambridge: Cambridge University Press.
Longair, M. S. (2006). The Cosmic Century: A History of Astrophysics and Cosmology. Cambridge: Cambridge University Press. A paperback edition of this book with a few small corrections was published by Cambridge University Press in 2013.
Longair, M. S. (2008a). Galaxy Formation, 2nd edition. Berlin: Springer.
Longair, M. S. (2008b). Maxwell and the science of colour, Philosophical Transactions of the Royal Society of London, A366, 1685–1696.
Longair, M. S. (2011a). High Energy Astrophysics, 3rd edition. Cambridge: Cambridge University Press.
Longair, M. S. (2011b). John Evan Baldwin, Biographical Memoirs of Fellows of the Royal Society, 57, 3–23.
Longair, M. S. (2013). Quantum Concepts in Physics. Cambridge: Cambridge University Press.
Longair, M. S. (2015). ‘…a paper…I hold to be great guns’: A commentary on Maxwell (1865) ‘A dynamical theory of the electromagnetic field’, Philosophical Transactions of the Royal Society of London, A373, 20140473.Google Scholar
Longair, M. S. and Macdonald, G. H. (1969). Observations of the structure of radio sources in the 3C catalogue, IV: Correlation diagrams and the evolution of radio sources, Monthly Notices of the Royal Astronomical Society, 145, 309–325.Google Scholar
Longair, M. S. and Waldram, J. R. (2009). Alfred Brian Pippard, Biographical Memoirs of Fellows of the Royal Society, 55, 201–220.Google Scholar
Longair, M. S. and Willmore, A. P. (1974). The X-ray spectrum of Cygnus-A, Monthly Notices of the Royal Astronomical Society, 168, 479–490.Google Scholar
Longair, M. S., Best, P. N., and Röttgering, H. J. A. (1995). HST observations of three radio galaxies at redshift z ∼ 1, Monthly Notices of the Royal Astronomical Society, 275, L47–L51.Google Scholar
Longair, M. S., Ryle, M., and Scheuer, P. A. G. (1973). Models of extended radiosources, Monthly Notices of the Royal Astronomical Society, 164, 243–270.Google Scholar
Lonzarich, G. G. (1984). Band structure and magnetic fluctuations in ferromagnetic or nearly ferromagnetic metals, Journal of Magnetism and Magnetic Materials, 45, 43–53.Google Scholar
Lonzarich, G. G. (1986). The magnetic equation of state and heat capacity in weak itinerant ferromagnets, Journal of Magnetism and Magnetic Materials, 54–57, 612–616.Google Scholar
Lonzarich, G. G. (1987). Quasiparticles and magnetic fluctuations in metals with large magnetic susceptibilities, Journal of Magnetism and Magnetic Materials, 70, 445–450.Google Scholar
Lonzarich, G. G. (1988). Magnetic oscillations and the quasiparticle bands of heavy electron systems, Journal of Magnetism and Magnetic Materials, 76–77, 1–10.Google Scholar
Lonzarich, G. G. (1994). Magnetic phase transitions at low temperatures, in Spring College in Condensed Matter on Quantum Phases. Trieste: International Centre for Theoretical Physics, SMR. 758-21.
Lonzarich, G. G. (1997). The magnetic electron, in Electron, ed. Springford, M., pp. 109–147. Cambridge: Cambridge University Press.
Loram, J.W., Mirza, K. A., Cooper, J. R., and Liang, W. Y. (1993). Electronic specific heat of YBa2Cu3O6+x from 1.8 to 300 K, Physical Review Letters, 71, 1740–1743.Google Scholar
Lovell, A. C. B. (1975). Patrick Maynard Stuart Blackett, Biographical Memoirs of the Fellows of the Royal Society, 21, 1–115.Google Scholar
Lovell, A. C. B. (1981). The mood of research: Optimism into doubt, New Scientist, 92, 490–495. This article appeared in the edition of New Scientist for 19 November 1981.Google Scholar
Lovell, A. C. B. (1985). Martin Ryle, Quarterly Journal of the Royal Astronomical Society, 26, 358–368.Google Scholar
Lovell, A. C. B. (1987). The emergence of radio astronomy in the UK after World War II, Quarterly Journal of the Royal Astronomical Society, 28, 1–9.Google Scholar
Macdonald, G. H., Kenderdine, S., and Neville, A. C. (1968). Observations of the structure of radio sources in the 3C catalogue, I, Monthly Notices of the Royal Astronomical Society, 138, 259–311.Google Scholar
Mack, J. E. (1947). Semi-Popular Motion Picture Record of the Trinity Explosion. MDDC221: United States Atomic Energy Commission, Washington, DC.
Mackay, C. D. (1969). Observations of the structure of radio source in the 3C catalogue, II, Monthly Notices of the Royal Astronomical Society, 145, 31–65.Google Scholar
MacKay, D. J. C. (2008). Sustainable Energy: Without the Hot Air. Cambridge: UIT Publications.
MacKenzie, A. P., Haselwimmer, R. K. W., and Taylor, A. W. (1998a). Extremely strong dependence of superconductivity on disorder in Sr2RuO4, Physical Review Letters, 80, 161–164.Google Scholar
MacKenzie, A. P., Julian, S. R., Diver, A. J. et al. (1998b). Quantum oscillation in the layered perovskite superconductor Sr2RuO4, Physical Review Letters, 80, 161–164.Google Scholar
MacKenzie, A. P., Julian, S. R., Lonzarich, G. G. et al. (1993). Resistive upper critical field of Tl2Ba2CuO6 at low temperatures and high magnetic fields, Physical Review Letters, 71, 1238–1241.Google Scholar
Mann, L. F. (1964). David Keilin, 1887–1963, Biographical Memoirs of Fellows of the Royal Society, 10, 183–205.Google Scholar
Marcus, J. A. (1947). The de Haas–van Alphen effect in a single crystal of zinc, Physical Review, 71, 559.Google Scholar
Marsden, E. (1914). The passage of α-particles through hydrogen, Philosophical Magazine (6), 27, 824–830.Google Scholar
Mather, J. C., Cheng, E. S., Eplee, Jr., R. E. et al. (1990). A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite, Astrophysical Journal Letters, 354, L37–L40.Google Scholar
Mathur, N. D., Grosche, F. M., Julian, S. R. et al. (1998). Magnetically mediated superconductivity in heavy fermion compounds, Nature, 394, 39–43.Google Scholar
Matthews, T. A. and Sandage, A. R. (1963). Optical identification of 3C 48, 3C 196 and 3C 286 with stellar objects, Astrophysical Journal, 138, 30–56.Google Scholar
Mattis, D. C. and Bardeen, J. (1958). Theory of anomalous skin effect in normal and superconducting metals, Physical Review, 111, 412–417.Google Scholar
Maxwell, J. C. (1853). On the equilibrium of elastic solids, Transactions of the Royal Society of Edinburgh, 20, 87–120. This paper was read to the Royal Society of Edinburgh on 18 February 1850 and includes confirmation of the theory from his experiments on strained glasses.Google Scholar
Maxwell, J. C. (1856a). Analogies in nature, in The Scientific Letters and Papers of James Clerk Maxwell, ed. Harman, P. M., volume 1, p. 244. Cambridge: Cambridge University Press. This volume was published in 1990.
Maxwell, J. C. (1856b). On Faraday's lines of force, Transactions of the Cambridge Philosophical Society, 10, 155–188.Google Scholar
Maxwell, J. C. (1860a). Illustrations of the dynamical theory of gases, Part 1: On the motions and collisions of perfectly elastic spheres, Philosophical Magazine (4), 20, 21–33. Also published in The Scientific Papers of James Clerk Maxwell (ed. Niven,W.D.), 1890. Volume 1, pp. 377–391. Cambridge: Cambridge University Press.Google Scholar
Maxwell, J. C. (1860b). Illustrations of the dynamical theory of gases, Part 2: On the process of diffusion of two or more kinds of moving particles among one another, Philosophical Magazine (4), 19, 19–32. Also published in The Scientific Papers of James Clerk Maxwell (ed. Niven,W.D.), 1890. Volume 1, pp. 392–405. Cambridge: Cambridge University Press.Google Scholar
Maxwell, J. C. (1860c). Illustrations of the dynamical theory of gases, Part 3: On the collision of perfectly elastic bodies of any form, Philosophical Magazine (4), 20, 33–37. Also published in The Scientific Papers of James Clerk Maxwell (ed. Niven,W.D.), 1890. Volume 1, pp. 405–409. Cambridge: Cambridge University Press.Google Scholar
Maxwell, J. C. (1861a). On physical lines of force, I: The theory of molecular vortices applied to magnetic phenomena, Philosophical Magazine (4), 21, 161–175. Also published in The Scientific Papers of James Clerk Maxwell (ed. Niven, W.D.), 1890. Volume 1, pp. 451–466. Cambridge: Cambridge University Press.Google Scholar
Maxwell, J. C. (1861b). On physical lines of force, II: The theory of molecular vortices applied to electric currents, Philosophical Magazine (4), 21, 281–291; plate, 338–348. Also published in The Scientific Papers of James Clerk Maxwell (ed. Niven,W.D.), 1890. Volume 1, pp. 467–488. Cambridge: Cambridge University Press.Google Scholar
Maxwell, J. C. (1862a). On physical lines of force, III: The theory of molecular vortices applied to statical electricity, Philosophical Magazine (4), 23, 12–24. Also published in The Scientific Papers of James Clerk Maxwell (ed. Niven, W.D.), 1890. Volume 1, pp. 489–502. Cambridge: Cambridge University Press.Google Scholar
Maxwell, J. C. (1862b). On physical lines of force, IV: The theory of molecular vortices applied to the action of magnetism on polarised light, Philosophical Magazine (4), 23, 85–95. Also published in The Scientific Papers of James Clerk Maxwell (ed. Niven, W.D.), 1890. Volume 1, pp. 502–512. Cambridge: Cambridge University Press.Google Scholar
Maxwell, J. C. (1865). A dynamical theory of the electromagnetic field, Philosophical Transactions of the Royal Society of London, 155, 459–512. Also published in The Scientific Papers of James Clerk Maxwell (ed. Niven, W.D.), 1890. Volume 1, pp. 526–597. Cambridge: Cambridge University Press.Google Scholar
Maxwell, J. C. (1867). On the dynamical theory of gases, Philosophical Transactions of the Royal Society of London, 157, 49–88. Also published in The Scientific Papers of James Clerk Maxwell (ed. Niven, W.D.), 1890. Volume 2, pp. 26–78. Cambridge: Cambridge University Press.Google Scholar
Maxwell, J. C. (1870). Theory of Heat. London: Longmans and Co.
Maxwell, J. C. (1873). A Treatise on Electricity and Magnetism 2 volumes. Oxford: Clarendon Press. The second edition was published postumously in 1881 and contains a few additional notes.
Maxwell, J. C. (1874). Letter to Robert Dundas Cay, 12th May 1874, in The Scientific Letters and Paper of James Clerk Maxwell, ed. Harman, P. M., volume 3, p. 70. Cambridge: Cambridge University Press.
Maxwell, J. C. (1878). Ether, in Encyclopaedia Britannica, 9th edition, volume 8, pp. 568–572. Edinburgh: A. & C. Black.
Maxwell, J. C. (1879). Electrical Researches of the Hon. Henry Cavendish. Cambridge: Cambridge University Press.
Maxwell, J. C. (1880). On a possible mode of detecting a motion of the solar system through the luminiferous ether, Proceedings of the Royal Society of London, 30, 109–110.Google Scholar
Maxwell, J. C. (1890). Introductory lecture on experimental physics, Scientific Papers, 2, 241–255. This is Maxwell's inaugural lecture as first Cavendish Professor of Experimental Physics, delivered in October 1871. The quotation is on page 244.Google Scholar
Maxwell, J. C., Stewart, B., and Jenkin, F. (1863). Description of an Experimental Measurement of Electrical Resistance, Made at King's College, British Association Reports, pp. 140–158. London: British Association Reports.
Mayer, A. M. (1878). On the morphological laws of the configurations formed by magnets floating vertically and subjected to the attraction of a superposed magnet; with notes on some of the phenomena in molecular structure which these experiments may serve to explain and illustrate, American Journal of Science, 16, 247–256.Google Scholar
McCormmach, R. (2012). Weighing the World: The Reverend John Michell of Thornhill. Berlin: Springer.
McMullan, G. J. and Lonzarich, G. G. (1997). The normal states of magnetic itinerant electron systems, in Magnetism in Metals: Matematish-Fysiske Meddelelser 45, eds McMorrow, D. F., Jensen, J., and Rønnow, H. M., pp. 247–257. Copenhagen: The Royal Danish Academy of Sciences and Letters.
Meadows, D. H., Meadows, D. L., Randers, J., and Behrens, III W.W. (1972). The Limits to Growth: A Report for the Club of Rome's Project on the Predicament of Mankind. New York: Universe Books.
Meissner, W. and Ochsenfeld, R. (1933). Ein neuer effekt bei eintritt der supraleitfhigkeit, Naturwissenschaften, 21, 787–788.Google Scholar
Meitner, L. and Frisch, O. R. (1939). Disintegration of uranium by neutrons: A new type of nuclear reaction, Nature, 143, 239–240.Google Scholar
Mendeleyev, D. I. (1869). On the relationship of the properties of the elements to their atomic weights, Zhurnal Russkoe Fiziko-Khimicheskoe Obshchestvo, 1, 60–77.Google Scholar
Menter, J. W. (1956). The direct study by electron microscopy of crystal lattices and their imperfections, Proceedings of the Royal Society of London, A236, 119–135.Google Scholar
Michelson, A. A. (1927). Studies in Optics. Chicago: University of Chicago Press.
Michelson, A. A. and Morley, E. W. (1887). On the relative motion of the Earth and the luminiferous ether, American Journal of Science, 34, 333–345.Google Scholar
Millikan, R. A. (1913). On the elementary electric charge and the Avogadro constant, Physical Review, 2, 109–143.Google Scholar
Millikan, R. A. (1916a). A direct photoelectric determination of Planck's h, Physical Review, 7, 355–388.Google Scholar
Millikan, R. A. (1916b). Einstein's photoelectric equation and contact electromotive force, Physical Review, 7, 18–32.Google Scholar
Mills, B. Y. and Slee, O. B. (1957). A preliminary survey of radio sources in a limited region of the sky at a wavelength of 3.5 m, Australian Journal of Physics, 10, 162–194.Google Scholar
Minkowski, R. (1960). A new distant cluster of galaxies, Astrophysical Journal, 132, 908–908.Google Scholar
Mitton, S. and Ryle, M. (1969). High resolution observations of Cygnus A at 2. 7 GHz and 5 GHz, Monthly Notices of the Royal Astronomical Society, 146, 221–233.Google Scholar
Monthoux, P. and Lonzarich, G. G. (1999). p-wave and d-wave superconductivity in quasitwo- dimensional metals, Physical Review B, 59, 14598–14605.Google Scholar
Moseley, H. G. J. (1913). The high frequency spectra of the elements, Philosophical Magazine (6), 26, 1024–1034.Google Scholar
Moseley, H. G. J. (1914). The high frequency spectra of the elements, Part II, Philosophical Magazine (6), 27, 703–713.Google Scholar
Mott, N. F. (1928). The solution of the wave equation for the scattering of particles by a Coulombian centre of force, Proceedings of the Royal Society of London, A118, 542–549.Google Scholar
Mott, N. F. (1930). An Outline of Wave Mechanics. Cambridge: Cambridge University Press.
Mott, N. F. (1949). The basis of electron theory of metals, with special reference to the transition metals, Proceedings of the Physical Society of London, A62, 416–422.Google Scholar
Mott, N. F. (1966). The Cavendish Laboratory: The Need for a New Building. Cambridge: Cavendish Laboratory.
Mott, N. F. (1984). Theory and experiment at the Cavendish circa 1932, in Cambridge Physics in the Thirties, ed. Hendry, J., pp. 125–132. Bristol: Adam Hilger.
Mott, N. F. (1986). Sir Nevill Mott: A Life in Science. London: Taylor and Francis.
Mott, N. F. (1990). Manchester and Cambridge, in Selections and Reflections: The Legacy of Sir Lawence Bragg, eds Thomas, J. M. and Phillips, D., pp. 96–97. Northwood, UK: Science Reviews.
Mott, N. F. (1992). Electrons in glass: 1977 Nobel Prize lecture, in Nobel Lectures, Physics 1971–1980, ed. Lundqvist, S., pp. 403–413. Singapore: World Scientific.
Mott, N. F. (1996). Dislocation in metal crystals, in The Life and Legacy of G. I. Taylor, ed. Batchelor, G., pp. 150–152. Cambridge: Cambridge University Press.
Mott, N. F. and Davis, E. A. (1971). Electronic Processes in Non-Crystalline Materials. Oxford: Oxford University Press.
Mott, N. F. and Davis, E. A. (1979). Electronic Processes in Non-Crystalline Materials, 2nd edition. Oxford: Oxford University Press.
Mott, N. F. and Gurney, R. W. (1940). Electronic Processes in Ionic Crystals. Oxford: Clarendon Press.
Mott, N. F. and Jones, H. (1936). The Theory of the Properties of Metals and Alloys. Oxford: Clarendon Press.
Mott, N. F. and Massey, H. S. W. (1934). Theory of Atomic Collisions. Oxford: Clarendon Press.
Mott, N. F., Pepper, M., Pollitt, S., Wallis, R. H., and Adkins, C. J. (1975). The Anderson transition, Proceedings of the Royal Society of London, A345, 169–205.Google Scholar
Mulvey, T. (1994). Vernon Ellis Cosslett, Biographical Memoirs of the Fellows of the Royal Society, 40, 63–84.Google Scholar
Nabarro, F. R. N. and Argon, A. S. (1995). Egon Orowan, Biographical Memoirs of Fellows of the Royal Society, 41, 317–340.Google Scholar
Nagaoka, H. (1904a). Kinematics of a system of particles illustrating the line and band spectrum and the phenomenon of radioactivity, Philosophical Magazine (6), 7, 445–455.Google Scholar
Nagaoka, H. (1904b). Kinematics of a system of particles illustrating the line and band spectrum and the phenomenon of radioactivity, Nature, 69, 392–393.Google Scholar
Nakazato, K. and Ahmed, H. (1995). The multiple-tunnel junction and its application to single-electron memory and logic circuits, Japanese Journal of Applied Physics, 34, 700–706.Google Scholar
Nakazato, K., Blaikie, R. J., Cleaver, J. R. A., and Ahmed, H. (1993). Single-electron memory, Electronic Letters, 29, 384–385.Google Scholar
Navarro, J. (2005). J.J. Thomson on the nature of matter: Corpusles and the continuum, Centaurus, 47, 259–282.Google Scholar
Neary, G. J. (1940). The β-ray spectrum of radium-E, Proceedings of the Royal Society of London, A175, 71–87.Google Scholar
Netterfield, C. B., Jarosik, N., Page, L., Wilkinson, D., and Wollack, E. (1995). The anisotropy in the cosmic microwave background at degree angular scales, Astrophysical Journal Letters, 445, L69–L72.Google Scholar
Newall, H. F. (1910). 1885–1894, in A History of the Cavendish Laboratory 1871–1910,, pp. 102–158. London: Longmans, Green and Co.
Newton, I. (1687). Philosophiæ Naturalis Principia Mathematica. London: Royal Society of London.
Newton, I. (1704). Optiks. London: Royal Society of London.
Newton, I, (1736). Method of Fluxions. London: Henry Woodfall. Newton's book was completed in 1671, but published posthumously.
Nichols, H. W. and Schelleng, J. C. (1925a). Propagation of electric waves over the Earth, Bell Systems Technical Journal, 4, 215–234.Google Scholar
Nichols, H.W. and Schelleng, J. C. (1925b). The propagation of radio waves over the Earth, Nature, 115, 334.Google Scholar
Nicholson, J.W. (1911). A structural theory of chemical elements, Philosophical Magazine (6), 22, 864–889.Google Scholar
Nicholson, J. W. (1912). The spectrum of nebulium, Monthly Notices of the Royal Astronomical Society, 72, 49–64.Google Scholar
Niedrig, H. (1996). The early history of electron microscopy in Germany, in Advances in Imaging and Electron Physics, Vol. 96, ed. Hawkes, P. W., pp. 131–148. London: Academic Press.
Occhialini, G. P. S. (1975). Memorial meeting for Lord Blackett, O.M., C.H., F.R.S. at the Royal Society on 31 October 1974, Notes and Records of the Royal Society of London, 29, 144–146.Google Scholar
Ohm, G. S. (1826a). Versuch einer theorie der durch galvanishe kraft hervorgebrachten electroskopische erscheinungen, Annalen der Physik und Chemie (2), 6, 459–469.Google Scholar
Ohm, G. S. (1826b). Versuch einer theorie der durch galvanishe kraft hervorgebrachten electroskopische erscheinungen, Annalen der Physik und Chemie (2), 7, 45–54.Google Scholar
Ohm, G. S. (1827). Die Galvanische Kette: Mathematisch Bearbeitet. Berlin: Riemann.
Oliphant, M. L. E. (1984).Working with Rutherford, in Cambridge Physics in the Thirties, ed. Hendry, J., pp. 184–188. Bristol: Adam Hilger.
Oliphant, M. L. E. and Rutherford, E. (1933). Experiments on the transmutation of elements by protons, Proceedings of the Royal Society of London, A141, 259–281.Google Scholar
Oliphant, M. L. E., Harteck, P., and Rutherford, E. (1934). Transmutation effects observed with heavy hydrogen, Proceedings of the Royal Society of London, A144, 692–703.Google Scholar
Oliphant, M. L. E., Kinsey, B. B., and Rutherford, E. (1933). The transmutation of lithium by protons and by ions of the heavy isotope of hydrogen, Proceedings of the Royal Society of London, A141, 722–733.Google Scholar
Onsager, L. (1949). Remark following a paper by C. J. Gorter on the two fluid model of liquid helium, Nuovo Cimento Supplement 2, 6, 249–450.Google Scholar
Onsager, L. (1952). Interpretation of the de Haas–van Alphen effect, Philosophical Magazine (7), 43, 1006–1008.Google Scholar
Ørsted, H. C. (1820). Experimenta circum Effectum Conflictus Electrici in Acum Magneticam. Copenhagen: pamphlet.
Orowan, E. (1934). Zur kristallplastizitat, I–III, Zeitschrift für Physik, 89, 605–659.Google Scholar
Orowan, E. (1943). The calculation of roll pressure in hot and cold flat rolling, Proceedings of the Institution of Mechanical Engineering, 150, 140–167.Google Scholar
Orowan, E., Nye, J. F., and Cairns, W. J. (1944). Notch brittleness and ductile fracture in metals, Theoretical Research Report, Ministry of Supply, Armament Research Department, England, 16/45.
Owen, F. N. and Ledlow, M. J. (1994). The FRI/Il break and the bivariate luminosity function in Abell clusters of galaxies, in The Physics of Active Galaxies, eds Bicknell, G. V., Dopita, M. A., and Quinn, P. J., volume 54 of Astronomical Society of the Pacific Conference Series, pp. 319–323. San Francisco: Astronomical Society of the Pacific Publications.
Pais, A. (1982). ‘Subtle is the Lord…: The Science and the Life of Albert Einstein. Oxford: Clarendon Press.
Pais, A. (1985). Inward Bound. Oxford: Clarendon Press.
Pauli, W. (1925). Über den zussamenhang des abschlusses der elektronengruppen im atom mit der komplexstrucktur der spektren, Zeitschrift für Physik, 31, 765–785.Google Scholar
Pauling, L., Corey, R. B., and Branson, H. R. (1951). The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain, Proceedings of the National Academy of Sciences of the United States of America, 37, 205–211.Google Scholar
Payne, M. C., Levi, A. F. J., Phillips, W. A., Inkson, J. C., and Adkins, C. J. (1984). Phonon structure of amorphous germanium by inelastic electron tunnelling spectroscopy, Journal of Physics C: Solid State Physics, 17, 1643–1653.Google Scholar
Peebles, P. J. E. (1982). Large-scale background temperature fluctuations due to scaleinvariant primaeval perturbations, Astrophysical Journal, 263, L1–L5.Google Scholar
Peebles, P. J. E., Page, Jr, L. A., and Partridge, R. B. (2009). Finding the Big Bang. Cambridge: Cambridge University Press.
Pendry, J. B. (1969a). The application of pseudopotentials to low energy electron diffraction. PhD dissertation, University of Cambridge.
Pendry, J. B. (1969b). The application of pseudopotentials to low-energy electron diffraction, I: Calculation of the potential and ‘inner potential’, Journal of Physics C: Solid State Physics, 2, 1215–1221.Google Scholar
Pendry, J. B. (1969c). The application of pseudopotentials to low-energy electron diffraction, II: Calculation of the reflected intensities, Journal of Physics C: Solid State Physics, 2, 2273–2282.Google Scholar
Pendry, J. B. (1969d). The application of pseudopotentials to low-energy electron diffraction, III: The simplifying effect of inelastic scattering, Journal of Physics C: Solid State Physics, 2, 2283–2289.Google Scholar
Penzias, A. A. and Wilson, R.W. (1965). A measurement of excess antenna temperature at 4080 MHz, Astrophysical Journal, 142, 419–421.Google Scholar
Pepper, M. (1998). Working with Nevill Mott, in Nevill Mott: Reminiscences and Appreciations, ed. Davis, E. A., pp. 211–218. London: Taylor and Francis.
Pepper, M., Pollitt, S., and Adkins, C. J. (1974a). Anderson localisation of holes in a Si inversion layer, Physics Letters A, 48, 113–114.Google Scholar
Pepper, M., Pollitt, S., and Adkins, C. J. (1974b). The spatial extent of localized state wavefunctions in silicon inversion layers, Journal of Physics C: Solid State Physics, 7, L273–L277.Google Scholar
Pepper, M., Pollitt, S., Adkins, C. J., and Stradling, R. (1975). Anderson localization in silicon inversion layers, CRC Critical Reviews in Solid State Physics, 5, 375–384.Google Scholar
Perrin, J. B. (1896). New experiments on the kathode rays, Nature, 53, 298–299.Google Scholar
Perrin, J. B. (1901). Les hypothèses moléculaires, Revue Scientifique, 15, 449–461.Google Scholar
Perutz, M. (1970). Bragg, protein crystallography and the Cavendish Laboratory, Acta Crystallographica, A26, 183–185.Google Scholar
Perutz, M. (1993). Co-chairman's remarks: Before the double helix, Gene, 135, 9–13.Google Scholar
Perutz, M. (1997). Science is Not a Quiet Life: Unravelling the Atomic Mechanism of Haemoglobin. London: Imperial College Press.
Perutz, M., Rossmann, M. G., Cullis, A. F. et al. (1960). Structure of haemoglobin: A threedimensional Fourier synthesis at 5.5 °A resolution obtained by X-ray analysis, Nature, 185, 416–422.Google Scholar
Peshkov, V. (1944). ‘Second sound’ in helium II, Journal of Physics (Moscow), 8, 381.Google Scholar
Pfleiderer, C., McMullan, G. J., Julian, S. R., and Lonzarich, G. G. (1997). Magnetic quantum phase transition in MnSi under hydrostatic pressures, Physical Review B, 55, 8330– 8338.Google Scholar
Phillips, D. C. (1979). William Lawrence Bragg, Biographical Memoirs of Fellows of the Royal Society, 25, 74–143.Google Scholar
Phillips, J. C. (1958). Energy-band interpolation scheme based on a pseudopotential, Physical Review, 112, 685–695.Google Scholar
Phillips, W. A. (1969). Ultrasonic attenuation at 500 MHz by superconducting tin, Proceedings of the Royal Society of London, A309, 259–280.Google Scholar
Phillips, W. A. (1972). Tunneling states in amorphous solids, Journal of Low Temperature Physics, 7, 351–360.Google Scholar
Phillips, W. A. (1987). Two-level states in glasses, Reports of Progress in Physics, 50, 1657–1708.Google Scholar
Phillips, W. A., Buchenau, U., Nücker, N., Dianoux, A.-J., and Petry, W. (1989). Dynamics of glassy and liquid selenium, Physical Review Letters, 63, 2381–2384.Google Scholar
Pickering, E. C. (1873). Elements of Physical Manipulation, Vol. 1. New York: Hurd and Houghton.
Pickering, E. C. (1876). Elements of Physical Manipulation, Vol. 2. New York: Hurd and Houghton.
Pilkington, J. D. H. and Scott, J. F. (1965). A survey of radio sources between declinations 20◦ and 40◦, Memoirs of the Royal Astronomical Society, 69, 183–224.Google Scholar
Pilkington, J. D. H., Hewish, A., Bell, S. J., and Cole, T. W. (1968). Observations of some further pulsed radio sources, Nature, 218, 126–129.Google Scholar
Pippard, A. B. (1953). An experimental and theoretical study of the relation between magnetic field and current in a superconductor, Proceedings of the Royal Society of London, A216, 547–568.Google Scholar
Pippard, A. B. (1957). Experimental determination of the Fermi surface in copper, Philosophical Transactions of the Royal Society of London, A250, 325–357.Google Scholar
Pippard, A. B. (1960). Theory of ultrasonic attenuation in metals, and magneto-acoustic oscillations, Proceedings of the Royal Society of London, A257, 165–193.Google Scholar
Pippard, A. B. (1962). Quantisation of coupled electron orbits in metals, Proceedings of the Royal Society of London, A270, 1–13.Google Scholar
Pippard, A. B. (1963). Commentary on a conjecture of Shoenberg's concerning the de Haas–van Alphen effect, Proceedings of the Royal Society of London, A272, 192–206.Google Scholar
Pippard, A. B. (1964). Quantization of coupled orbits in metals, II: The two-dimensional network, with special reference to the properties of zinc, Philosophical Transactions of the Royal Society of London, A256, 317–355.Google Scholar
Pippard, A. B. (1965). The Dynamics of Conduction Electrons. New York: Gordon and Breach.
Pippard, A. B. (1971). Reconciling Physics with Reality. Cambridge: Cambridge University Press.
Pippard, A. B. (1974). The move to West Cambridge, in A Hundred Years of Cambridge Physics, ed. Moralee, D., pp. 42–44. Cambridge: Cavendish Laboratory. The second and third editions were published in 1980 (ed. Parker, J.) and 1995 (eds. Jacques, G. and Bache, I.) with the title A Hundred Years and More of Cambridge Physics.
Pippard, A. B. (1978a). The Physics of Vibration, Vol. 1: The Simple Classical Vibrator. Cambridge: Cambridge University Press.
Pippard, A. B. (1978b). The Physics of Vibration,Vol. 2: The Simple Vibrator in Quantum Mechanics. Cambridge: Cambridge University Press.
Pippard, A. B. (1985). Response and Stability: An Introduction to the Physical Theory. Cambridge: Cambridge University Press.
Pippard, A. B. (1989). Magnetoresistance in Metals. Cambridge: Cambridge University Press.
Pippard, A. B. (1990). Bragg: The Cavendish Professor, in Selections and Reflections: The Legacy of Sir Lawence Bragg, eds Thomas, J. M. and Phillips, D., pp. 97–100. Northwood, UK: Science Reviews.
Pippard, A. B. (1995). Physics in 1900, in Twentieth Century Physics, eds Brown, L. M., Pais, A., and Pippard, A. B., pp. 1–41. Bristol and Philadelphia: Institute of Physics Publishing, and New York: American Institute of Physics Press.
Pippard, A. B. (1998). Sir Nevill Francis Mott C. H., Biographical Memoirs of Fellows of the Royal Society, 44, 315–328. Mott's complete bibliography was originally available on microfiche. This has now been scanned and is available in the Royal Society's online version of the Biographical Memoir.
Pippard, A. B., Shepherd, J. G., and Tindall, D. A. (1971). Resistance of normal– superconducting interfaces, Proceedings of the Royal Society of London, A324, 17–35.Google Scholar
Planck, M. (1900). Zur theorie des gesetzes der energieverteilung im normalspektrum, Verhandlungen der Deutschen Physikalischen Gesellschaft, 2, 237–245. Also published in Planck's collected papers: Physikalische Abhandlungen und Vortrage, 1, pp. 698–706, Braunschweig: Vieweg. English translation: Hermann, A. (1971). The Genesis of Quantum Theory (1899–1913), p. 10. Cambridge, MA: MIT Press.Google Scholar
Planck, M. (1902). Über die natur des weisen lichtes, Annalen der Physik (4), 7, 390–400. Also published in Planck's collected papers: Physikalische Abhandlungen und Vortrage, 1, pp. 763–773, Braunschweig: Vieweg.Google Scholar
Poisson, S.-D. (1812). Mémoire sur la Distribution de l’Électricité à la Surface des Corps Conducteurs. Paris: Académie des Sciences de l'Institut de France.
Polanyi, M. (1934). Über eine art gitterstörung, die einen kristall plastisch machen könnte, Zeitschrift für Physik, 89, 660–664.Google Scholar
Pollitt, S., Pepper, M., and Adkins, C. J. (1976). The Anderson transition in silicon inversion layers, Surface Science, 58, 79–88.Google Scholar
Porch, A., Cheah, H. M., and Waldram, J. R. (1990). Microwave response of aligned YBa2Cu3O7−δ powders, Physica B: Condensed Matter, 165, 1197–1198.Google Scholar
Porch, A., Cooper, J. R., Zheng, D. N. et al. (1993). Temperature dependent magnetic penetration depth of Co and Zn doped YBa2Cu3O7 obtained from the AC susceptibility of magnetically aligned powders, Physica C: Superconductivity, 214, 350–358.Google Scholar
Proudman, J. (1916). On the motion of solids in a liquid possessing vorticity, Proceeedings of the Royal Society of London, A92, 408–424.Google Scholar
Quinn, T. (2005). Sir Alan Hugh Cook, Biographical Memoirs of Fellows of the Royal Society, 51, 87–100.Google Scholar
Rao, A., Chow, P. C. Y., Gélinas, S. et al. (2013). The role of spin in the kinetic control of recombination in organic photovoltaics, Nature, 500, 435–439. Ratcliffe, J. A. (1966). Edward Victor Appleton, Biographical Memoirs of Fellows of the Royal Society, 12, 1–21.Google Scholar
Ratcliffe, J. A. and Huxley, L. G. H. (1949). A survey of ionospheric cross modulation, Proceedings of the Institution of Electrical Engineers, 96, 433–440.Google Scholar
Ratcliffe, J. A., Booker, H. G., and Shinn, D. H. (1950). Diffraction from an irregular screen with applications to ionospheric problems, Philosophical Transactions of the Royal Society of London, A242, 579–607.Google Scholar
Rayleigh, J. W. (1877). The Theory of Sound, Vol. 1. London: Macmillan
Rayleigh, J. W. (1878). The Theory of Sound, Vol. 2. London: Macmillan.
Rayleigh, J.W. (1882a). Comparison of methods for the determination of resistances in absolute measure, Philosophical Magazine (5), 14, 329–346. Rayleigh's paper is also contained in Scientific Papers by John William Strutt, Baron Rayleigh, 1881–1887, Vol.2. Cambridge: Cambridge University Press.
Rayleigh, J.W. (1882b). Experiments to determine the value of the British Association unit of resistance in absolute measure, Philosophical Transactions of the Royal Society of London, 173, 661–697. Rayleigh's paper is also contained in Scientific Papers by John William Strutt, Baron Rayleigh, 1881–1887, Vol. 2. Cambridge: Cambridge University Press.
Rayleigh, J. W. (1912). Scientific Papers by John William Strutt, Baron Rayleigh, 1902– 1910, volume 5. Cambridge: Cambridge University Press. Relevant excerpts from Rayleigh's Nobel Prize lecture are on pages 212–215.
Rayleigh, J.W. and Ramsay, W. (1895). Argon, a new constituent of the atmosphere, Philosophical Transactions of the Royal Society of London, A186, 187–241. Rayleigh and Ramsay's paper is also contained in Scientific Papers by John William Strutt, Baron Rayleigh, 1892–1901, Vol. 4. Cambridge: Cambridge University Press.
Rayleigh, J. W. and Schuster, A. (1881). On the determination of the ohm in absolute measure, Proceedings of the Royal Society of London, 32, 104–141. Rayleigh and Schuster's paper is also contained in Scientific Papers by John William Strutt, Baron Rayleigh, 1881–1887, Vol. 2. Cambridge: Cambridge University Press.
Rayleigh, J. W. and Sidgwick, E. M. (1882). On the specific resistance of mercury, Philosophical Transactions of the Royal Society of London, 174, 173–185. Rayleigh and Sidgwick's paper is also contained in Scientific Papers by John William Strutt, Baron Rayleigh, 1881–1887, Vol. 2. Cambridge: Cambridge University Press.
Rayleigh, J.W. and Sidgwick, E. M. (1883). Experiments, by the method of Lorentz, for the further determination in absolute value of the British Association unit of resistance, with an appendix on the determination of the pitch of a standard tuning fork, Philosophical Transactions of the Royal Society of London, 174, 295–322. Rayleigh and Sidgwick's paper is also contained in Scientific Papers by John William Strutt, Baron Rayleigh, 1881–1887, Vol. 2. Cambridge: Cambridge University Press.Google Scholar
Rayleigh, J. W. and Sidgwick, E. M. (1884). On the electro-chemical equivalent of silver, and on the absolute electromotive force of Clark cells, Philosophical Transactions of the Royal Society of London, 175, 411–460. Rayleigh and Sidgwick's paper is also contained in Scientific Papers by John William Strutt, Baron Rayleigh, 1881–1887, Vol.2. Cambridge: Cambridge University Press.Google Scholar
Rayleigh, R. J. S. (1924). John William Strutt, Third Baron Rayleigh. London: Edward Arnold and Co.
Reber, G. (1940). Notes: Cosmic static, Astrophysical Journal, 91, 621–624.Google Scholar
Reber, G. (1944). Cosmic static, Astrophysical Journal, 100, 279–287.Google Scholar
Rees, M. J. (1971). New interpretation of extragalactic radio sources, Nature, 229, 312– 317. Google Scholar
Rees, N. (1990). A deep 38-MHz radio survey of the area delta greater than +60 degrees, Monthly Notices of the Royal Astronomical Society, 244, 233–246.Google Scholar
Reines, F. and Cowan, C. L. (1956). The neutrino, Nature, 178, 446–449.Google Scholar
Reuter, G. E. H. and Sondheimer, E. H. (1956). The theory of the anomalous skin effect in metals, Proceeedings of the Royal Society of London, A195, 336–364.Google Scholar
Rhodes, R. (1986). The Making of the Atomic Bomb. New York: Simon and Schuster.
Richardson, O. (1901). On the negative radiation from hot platinum, Proceedings of the Cambridge Philosophical Society, 11, 286–295.Google Scholar
Richardson, O. and Brown, K. (1908). Kinetic energy of negative electrons emitted by hot bodies, Philosophical Magazine (6), 16, 353–376.Google Scholar
Riley, J. M. and Pooley, G. G. (1975). Observations of 31 extragalactic radio sources with the Cambridge 5-km telescope at 5 GHz, Memoirs of the Royal Astronomical Society, 80, 105–137.Google Scholar
Riley, J. M. and Pooley, G. G. (1978). The radio structure of 3C 123 at 2.7 adn 15 GHz, Monthly Notices of the Royal Astronomical Society, pp. 245–255.Google Scholar
Rindler, W. (2001). Relativity: Special, General and Cosmological. Oxford: Oxford University Press.
Rodenburg, J. M. (1989). The phase problem, microdiffraction and wavelength-limited resolution, Ultramicrosopy, 27, 413–422.Google Scholar
Roll, P. G. and Wilkinson, D. T. (1966). Cosmic background radiation at 3.2 cm: Support for cosmic black-body radiation, Physical Review Letters, 16, 405–407.Google Scholar
Röntgen, W. C. (1895). Über eine neue art von strahlen. (On a new type of ray. Preliminary communication), Erste Mittheilung: Sitzungsberichte der Physikalisch-Medizinische Gesellschaft, Würzburg, p. 137. Röntgen's paper was published in December 1895. It was also published in English in 1896, Nature, 53, 274.Google Scholar
Röntgen, W. R. (1901). Wilhelm Conrad Röntgen: Biographical. Nobel Media AB 2014. http://www.nobelprize.org/nobel_prizes/physics/laureates/1901/rontgen-bio.html.
Rowley, S. E., Spalek, L. J., Smith, R. P. et al. (2014). Ferroelectric quantum criticality, Nature Physics, 10, 367–372.Google Scholar
Roy, M. (2004). The Weathermen of Ben Nevis 1883–1904. Edinburgh: Royal Meteorological Society.
Rubinowicz, A.(1918). Bohrsche frequenzbedingnug und erhaltung des impulsmomentes, I: Tiel, Physikalische Zeitschrift, 19, 441–445.Google Scholar
Rutherford, E.(1899). Uranium radiation and the electrical conduction produced by it, Philosophical Magazine (5), 47, 109–163.Google Scholar
Rutherford, E.(1903). The electric and magnetic deviation of the easily absorbed rays from radium, Philosophical Magazine (5), 5, 177–187.Google Scholar
Rutherford, E.(1905a). Bakerian Lecture: The succession of changes in radioactive bodies, Philosophical Transactions of the Royal Society of London, A204, 169–219.Google Scholar
Rutherford, E.(1905b). The radium: The cause of the Earth's heat, Harper's Magazine, pp. 390–396.Google Scholar
Rutherford, E.(1907). Some cosmical aspects of radioactivity, Journal of the Royal Society of Canada, 1, 145–165.Google Scholar
Rutherford, E.(1911). The scattering of α and β particles by matter and the structure of the atom, Philosophical Magazine (6), 21, 669–688.Google Scholar
Rutherford, E.(1913). The structure of the atom, Nature, 92, 423.Google Scholar
Rutherford, E.(1919a). Collisions of α particles with light atoms, I: Hydrogen, Philosophical Magazine (6), 37, 537–561.Google Scholar
Rutherford, E.(1919b). Collisions of α particles with light atoms, II: Velocity of the hydrogen atom, Philosophical Magazine (6), 37, 562–571.Google Scholar
Rutherford, E.(1919c). Collisions of α particles with light atoms, III: Nitrogen and oxygen atoms, Philosophical Magazine (6), 37, 571–580.Google Scholar
Rutherford, E.(1919d). Collisions of α particles with light atoms, IV: An anomalous effect in nitrogen, Philosophical Magazine (6), 37, 581–587.Google Scholar
Rutherford, E.(1920). Bakerian Lecture: Nuclear constitution of atoms, Proceedings of the Royal Society of London, A117, 300–316.Google Scholar
Rutherford, E.(1928). Address of the President, Sir Ernest Rutherford, O.M., at the Anniversary Meeting, November 30, 1927, Proceedings of the Royal Society of London, A117, 300–316.Google Scholar
Rutherford, E.and Andrade, E. N. da, C. (1913). The reflection of γ -rays from crystals, Nature, 92, 267.Google Scholar
Rutherford, E.and Chadwick, J. (1921). The artificial disintegration of light elements, Philosophical Magazine (6), 42, 809–825.Google Scholar
Rutherford, E.and Chadwick, J. (1924a). The bombardment of elements by α-particles, Nature, 113, 457.Google Scholar
Rutherford, E.and Chadwick, J. (1924b). Further experiments on the artificial disintegration of elements, Proceedings of the Physical Society of London, 36, 417–422.Google Scholar
Rutherford, E.and Geiger, H. (1908a). The charge and nature of the alpha particle, Proceeedings of the Royal Society of London, A81, 162–173.Google Scholar
Rutherford, E.and Geiger, H. (1908b). An electrical method of counting the number of α-particles from radio-active substances, Proceeedings of the Royal Society of London, A81, 141–161.Google Scholar
Rutherford, E.and Robinson, H. R. (1913). The analysis of the β rays from radium B and radium C, Philosophical Magazine (6), 26, 717–729.Google Scholar
Rutherford, E.and Robinson, H. R. (1914). The mass and velocities of the alpha particles from radioactive substances, Philosophical Magazine, (6), 28, 552–572.Google Scholar
Rutherford, E.and Royds, T. (1909). The nature of the α particle from radioactive substances, Philosophical Magazine (6), 17, 281–286.Google Scholar
Rutherford, E.and Soddy, F. (1902a). The cause and nature of radioactivity, Part I, Philosophical Magazine (6), 4, 370–396 Google Scholar
Rutherford, E.and Soddy, F. (1902b). The cause and nature of radioactivity, Part II, Philosophical Magazine (6), 4, 569–585.Google Scholar
Rutherford, E.and Soddy, F. (1903). Radioactive change, Philosophical Magazine (6), 5, 576–591.Google Scholar
Rutherford, E., Chadwick, J., and Ellis, C. (1930a). Radiations from Radioactive Substances. Cambridge: Cambridge University Press.
Rutherford, E., Robinson, H. R., and Rawlinson, W. F. (1914). Spectrum of the β-rays excited by γ rays, Philosophical Magazine (6), 28, 281–286.Google Scholar
Rutherford, E., Ward, F. A. B., and Wynn-Williams, C. E. (1930b). A new method of analysis of groups of α-rays. (1) α-rays from radium C, thorium C and actinium C, Proceedings of the Royal Society of London, A129, 211–234.Google Scholar
Ryle, M. (1952). A new radio interferometer and its application to the observation of weak radio stars, Proceedings of the Royal Society of London, A211, 351–378.Google Scholar
Ryle, M. (1955). Radio stars and their cosmological significance, The Observatory, 75, 137–147.Google Scholar
Ryle, M. (1972). The 5-km radio telescope at Cambridge, Nature, 239, 435–438.Google Scholar
Ryle, M. (1975). Radio telescopes of large resolving power, Reviews of Modern Physics, 47, 557–566.Google Scholar
Ryle, M. (1982). Wind power, in Research at the Cavendish Laboratory, ed. Cook, A. H., pp. 8–9. Cambridge: Cavendish Laboratory.
Ryle, M. and Graham-Smith, F. G. (1948). A new intense source of radio-frequency radiation in the constellation of Cassiopeia, Nature, 162, 462–463.Google Scholar
Ryle, M. and Hewish, A. (1960). The synthesis of large radio telescopes, Monthly Notices of the Royal Astronomical Society, 120, 220–230.Google Scholar
Ryle, M. and Neville, A. C. (1962). A radio survey of the north polar region with a 4.5 minute of arc pencil-beam system, Monthly Notices of the Royal Astronomical Society, 125, 39–56.Google Scholar
Ryle, M. and Pooley, G. G. (1968). The extension of the number–flux density relation for radio sources to very small flux densities, Monthly Notices of the Royal Astronomical Society, 139, 515–528.Google Scholar
Ryle, M. and Sandage, A. (1964). The optical identification of three new radio objects of the 3C 48 class, Atrophysical Journal, 139, 419–421.Google Scholar
Ryle, M. and Vonberg, D. D. (1946). Solar radiation on 175 Mc/s, Nature, 158, 339– 340.Google Scholar
Ryle, M. and Vonberg, D. D. (1948). An investigation of radio-frequency radiation from the sun, Proceedings of the Royal Society of London, A193, 98–120.Google Scholar
Ryle, M., Elsmore, B., and Neville, A. C. (1965). High-resolution observations of the radio sources in Cygnus and Cassiopeia, Nature, 205, 1259–1262.Google Scholar
Ryle, M., Graham-Smith, F. G., and Elsmore, B. (1950). A preliminary survey of the radio stars in the northern hemisphere, Monthly Notices of the Royal Astronomical Society, 110, 508–523.Google Scholar
Sandage, A. R. (1965). The existence of a major new constituent of the universe: The quasistellar galaxies, Astrophysical Journal, 141, 1560–1578.Google Scholar
Saxena, S. S., Agarwal, P., Ahilan, K. et al. (2000). Superconductivity on the border of itinerant-electron ferromagnetism in UGe2, Nature, 406, 587–592.Google Scholar
Scherzer, O. (1947). Sphärische und chromatische korrektur von elektronen-linsen, Optik, 2, 114–132.Google Scholar
Scheuer, P. A. G. (1957). A statistical method for analysing observations of faint radio sources, Proceedings of the Cambridge Philosophical Society, 53, 764–773.Google Scholar
Scheuer, P. A. G. (1974). Models of extragalactic radio sources with a continuous energy supply from a central object, Monthly Notices of the Royal Astronomical Society, 166, 513–528.Google Scholar
Scheuer, P. A. G. (1975). Radio astronomy and cosmology, in Galaxies and the Universe, eds Sandage, A., Sandage, M., and Kristian, J., pp. 725–760. Chicago: University of Chicago Press.
Scheuer, P. A. G. (1984). The development of aperture synthesis at Cambridge, in The Early Years of Radio Astronomy: Reflections Fifty Years after Jansky's Discovery, ed. Sullivan III, W. T., pp. 249–265. Chicago and London: University of Chicago Press.
Schmidt, G. C. (1898). Ueber die von den thorvebindungen und einigen anderen substanzen ausgehende strahlung, Annalen der Physik und Chemie (Wiedemanns Annalen) (3), 65, 141–151.Google Scholar
Schmidt, M. (1963). 3C 273: A star-like object with large red-shift, Nature, 197, 1040– 1040.Google Scholar
Schmidt, M. and Matthews, T. A. (1964). Redshift of the quasi-stellar radio sources 3C 47 and 3C 147, Astrophysical Journal, 139, 781–785.Google Scholar
Schuster, A. (1910). The Clerk–Maxwell Period, in A History of the Cavendish Laboratory, 1871–1910, pp. 14–39. London: Longmans, Green and Co.
Schwarzschild, K. (1916). Zur quanten hypothese, Sitzungberichte der (Kgl.) Preussischen Akademie der Wissenschaften (Berlin), pp. 548–568.Google Scholar
Scott, P. F., Saunders, R., Pooley, G. et al. (1996). Measurements of structure in the cosmic background radiation with the Cambridge Cosmic Anistropy Telescope, Astrophysical Journal Letters, 461, L1–L4.Google Scholar
Sebastian, S. E., Harrison, N., Altarawneh, M. M. et al. (2011). Chemical potential oscillations from nodal Fermi surface pocket in the underdoped high-temperature superconductor YBa2Cu3O6+x, Nature Communications, 2, 471.Google Scholar
Sekido, Y. and Elliot, H. (1985). Early History of Cosmic Ray Studies. Dordrecht: D. Reidel.
Shakeshaft, J. R., Ryle, M., Baldwin, J. E., Elsmore, B., and Thomson, J. (1955). A radio survey of radio sources between declinations −38 and +83, Memoirs of the Royal Astronomical Society, 67, 106–154.Google Scholar
Shimizu, T. (1921a). A preliminary note on branched α-ray tracks, Proceedings of the Royal Society of London, A99, 432–435.Google Scholar
Shimizu, T. (1921b). A reciprocating expansion apparatus for detecting ionising rays, Proceedings of the Royal Society of London, A99, 425–431.Google Scholar
Shoenberg, D. (1939). The magnetic properties of bismuth, III: Further measurements on the de Haas–van Alphen effect, Proceedings of the Royal Society of London, A170, 341– 364.Google Scholar
Shoenberg, D. (1940). Properties of superconducting colloids and emulsions, Proceedings of the Royal Society of London, A175, 49–70.Google Scholar
Shoenberg, D. (1952). The de Haas–van Alphen effect, Philosophical Transactions of the Royal Society of London, A245, 1–57.Google Scholar
Shoenberg, D. (1985). Piotr Leonidovich Kapitsa, Biographical Memoirs of Fellows of the Royal Society, 31, 327–374.Google Scholar
Siegel, D. M. (1991). Innovation in Maxwell's Electromagnetic Theory: Molecular Vortices, Displacement Current, and Light. Cambridge: Cambridge University Press.
Simons, B. M. and Clevers, H. (2011). Strategies for homeostatic stem cell self-renewal in adult tissues, Cell, 145, 851–862.Google Scholar
Sirringhaus, H., Kawase, T., Friend, R. et al. (2000). High-resolution inkjet printing of all-polymer transistor circuits, Science, 290, 2123–2126.Google Scholar
Skilling, J. and Bryan, R. K. (1984). Maximum entropy image reconstruction: General algorithm, Monthly Notices of the Royal Astronomical Society, 211, 111–124.Google Scholar
Skobeltsyn, D. (1929). Über eine neue art sehr schneller β-strahlen (On a new type of very fast β-ray), Zeitschrift für Physik, 54, 686–702.Google Scholar
Smail, I., Ivison, R. J., and Blain, A. W. (1997). A deep sub-millimeter survey of lensing clusters: A new window on galaxy formation and evolution, Astrophysical Journal Letters, 490, L5–L8.Google Scholar
Smith, C. and Wise, N. M. (1989). Energy and Empire: A Biographical Study of Lord Kelvin. Cambridge: Cambridge University Press.
Smith, C. G., Pepper, M., Ahmed, H. et al. (1988). The transition from one- to zerodimensional ballistic transport, Journal of Physics C: Solid State Physics, 21, L893–L898.Google Scholar
Smith, D. M. (1985). The ‘New Blood’ scheme and its application to geography, Area, 17, 237–243.Google Scholar
Smith, H., Buckle, J., Hills, R. et al. (2008). HARP: A submillimetre heterodyne array receiver operating on the James Clerk Maxwell Telescope, Proceedings of the SPIE, 7020, 70200Z-1–70200Z-15.Google Scholar
Smith, H. E. and Spinrad, H. (1980). An update of the status of the revised 3C catalog of radio sources: 22 new galaxy redshifts, Publications of the Astronomical Society of the Pacific, 92, 553–569.Google Scholar
Smith, H. J. and Hoffleit, D. (1963). Light variations in the superluminous radio galaxy 3C 273, Nature, 198, 650–651.Google Scholar
Smithers, A. and Robinson, P. (2006). Physics in Schools and Universities, II: Patterns and Policies. Gatsby Charitable Foundation report. Buckingham: Carmichael Press.
Smoot, G. F., Bennett, C. L., Kogut, A. et al. (1992). Structure in the COBE differential microwave radiometer first-year maps, Astrophysical Journal, 396, L1–L5.Google Scholar
Sommerfeld, A. (1915a). Die feinstruktur der wassensttoff- und wasserstoffähnlichen linien, Münchener Berichte, pp. 459–500.Google Scholar
Sommerfeld, A. (1915b). Zur theorie der Balmerschen serie, Münchener Berichte, pp. 425– 458.
Sommerfeld, A. (1916). Zur quantentheorie der spektrallinien, Annalen der Physik (4), 51, 1–94, 125–167.Google Scholar
Sommerfeld, A. (1919). Atombau und Spektrallinien. Braunschweig: Vieweg. The third edition was published in English as Atomic Spectra and Spectral Lines, trans. Brose, H.L., 1923. London: Methuen.
Spear, W. E. and Le Comber, P. G. (1975). Substitutional doping of amorphous silicon, Solid State Communications, 17, 1193–1196.Google Scholar
Squires, G. L. (1954). The scattering of slow neutrons by ferromagnetic crystals, Proceedings of the Physical Society of London, A67, 248–2XX.Google Scholar
Squires, G. L. (2012). Introduction to the Theory of Thermal Neutron Scattering. Cambridge: Cambridge University Press. This is a reprint of the original edition published in 1978.
Stewart, A. T. and Squires, G. L. (1953). The scattering of slow neutrons by ortho- and para-hydrogen, Physical Review, 90, 1125–1125.Google Scholar
Stobbs, W. M. (1973). Dislocation interaction with irradiation damage in the high voltage electron microscope, Philosophical Magazine, 27(1), 257–263.Google Scholar
Stockton, A. and Ridgway, S. (1996). Optical and near IR observations of Cygnus A, in Cygnus A: Study of a Radio Galaxy, eds Carilli, C. L. and Harris, D. E., pp. 1–4. Cambridge: Cambridge University Press.
Stoner, E. C. (1924). The distribution of electrons among atomic levels, Philosophical Magazine (6), 48, 719–736.Google Scholar
Stoney, G. J. (1891). On the cause of double lines and of equidistant satellites in the spectra of gases, Scientific Transactions of the Royal Dublin Society, 4, 563–608. The reference to the term ‘electron’ appears on page 583.Google Scholar
Storey, L. R. O. (1953). An investigation of whistling atmospherics, Philosophical Transactions of the Royal Society of London, A246, 113–141.Google Scholar
Sullivan III, W. T. (2009). Cosmic Noise: A History of Early Radio Astronomy. Cambridge: Cambridge University Press.
Sviedrys, R. (1976). The rise of physics laboratories in Britain, Historical Studies in the Physical Sciences, 7, 405–436.Google Scholar
Szilard, L. and Zinn, W. H. (1939). Instantaneous emission of fast neutrons in the interaction of slow neutrons with uranium, Physical Review, 55, 799–800.Google Scholar
Tabor, D. (1955). The mechanism of rolling friction, II: The elastic range, Proceedings of the Royal Society of London, A229, 199– 220.Google Scholar
Tabor, D. (1969). Frank Philip Bowden, Biographical Memoirs of Fellows of the Royal Society, 15, 1–34.Google Scholar
Tabor, D. (1991). Gases, Liquids and Solids and Other States of Matter. Cambridge: Cambridge University Press. This is the third edition of Tabor's book, first published by Penguin in 1969.
Tabor, D. and Winterton, R. H. S. (1969). The direct measurement of normal and retarded van der Walls forces, Proceedings of the Royal Society of London, A312, 435–450.Google Scholar
Taillefer, L. and Lonzarich, G. G. (1985). Effect of spin fluctuations on the magnetic equation of state of ferromagnetic or nearly ferromagnetic metals, Journal of Physics C: Solid State Physics, 18, 4339–4371.Google Scholar
Taillefer, L. and Lonzarich, G. G. (1988). Heavy-fermion quasiparticles in UPt3, Physical Review Letters, 60, 1570–1573.Google Scholar
Tammuz, N., Smith, R. P., Campbell, R. L. D. et al. (2011). Can a Bose gas be saturated?, Physical Review Letters, 106, 230401.Google Scholar
Taylor, G. I. (1909). Interference fringe with feeble light, Proceeedings of the Cambridge Philosophical Society, 15, 114–115.Google Scholar
Taylor, G. I. (1910). The conditions necessary for discontinuous motion in gases, Proceeedings of the Royal Society of London, A84, 371–377.Google Scholar
Taylor, G. I. (1915). Eddy motion in the atmosphere, Philosophical Transactions of the Royal Society of London, A215, 1–26.Google Scholar
Taylor, G. I. (1916). Pressure distribution over the wing of an aeroplane in flight, Reports and Memoranda of the Advisory Committee of Aeronautics, 287.Google Scholar
Taylor, G. I. (1917a). Motion of solids in fluids when the flow is not irrotational, Proceeedings of the Royal Society of London, A93, 99–113.Google Scholar
Taylor, G. I. (1917b). Phenomena connected with turbulence in the lower atmosphere, Proceeedings of the Royal Society of London, A94, 137–155.Google Scholar
Taylor, G. I. (1919). Tidal friction in the Irish Sea, Philosophical Transactions of the Royal Society of London, A220, 1–33.Google Scholar
Taylor, G. I. (1920). Tidal friction and the secular acceleration of the Moon, Monthly Notices of the Royal Astronomical Society, 80, 308–309.Google Scholar
Taylor, G. I. (1923a). Experiments on the motion of solid bodies in rotating fluids, Proceeedings of the Royal Society of London, A104, 213–218.Google Scholar
Taylor, G. I. (1923b). Stability of a viscous liquid contained between two rotating cylinders, Philosophical Transactions of the Royal Society of London, A223, 289–343.Google Scholar
Taylor, G. I. (1934). The mechanism of plastic deformation in crystals, I: Theoretical, Proceeedings of the Royal Society of London, A145, 362–387.Google Scholar
Taylor, G. I. (1935a). Statistical theory of turbulence I, Proceeedings of the Royal Society of London, A151, 421–444.Google Scholar
Taylor, G. I. (1935b). Statistical theory of turbulence II, Proceeedings of the Royal Society of London, A151, 444–454.Google Scholar
Taylor, G. I. (1935c). Statistical theory of turbulence, III: Distribution of dissipation of energy in a pipe over its cross-section, Proceeedings of the Royal Society of London, A151, 455–464.Google Scholar
Taylor, G. I. (1935d). Statistical theory of turbulence, IV: Diffusion in a turbulent air stream, Proceeedings of the Royal Society of London, A151, 465–478.Google Scholar
Taylor, G. I. (1938). The spectrum of turbulence, Proceeedings of the Royal Society of London, A164, 476–490.Google Scholar
Taylor, G. I. (1950a). The formation of a blast wave by a very intense explosion, I: Theoretical discussion, Proceeedings of the Royal Society of London, A201, 159–174.Google Scholar
Taylor, G. I. (1950b). The formation of a blast wave by a very intense explosion, II: The atomic explosion of 1945, Proceeedings of the Royal Society of London, A201, 175–186.Google Scholar
Taylor, G. I. (1958). Scientific Papers I. Mechanics of Solids, ed. Batchelor, G. K. Cambridge: Cambridge University Press.
Taylor, G. I. (1960). Scientific Papers II. Meteorology, Oceanography and Turbulent Flow, ed. Batchelor, G. K. Cambridge: Cambridge University Press.
Taylor, G. I. (1963). Scientific Papers III. Aerodynamics and the Mechanics of Projectiles and Explosives, ed. Batchelor, G. K. Cambridge: Cambridge University Press.
Taylor, G. I. (1971). Scientific Papers IV. Mechanics of Fluids: Micellaneous Papers, ed. Batchelor, G. K. Cambridge: Cambridge University Press.
Thomson, G. P. (1928). Experiments on the diffraction of cathode rays, Proceedings of the Royal Society of London, A117, 600–609.Google Scholar
Thomson, J. J. (1881). On the electric and magnetic effects produced by the motion of electrified bodies, Philosophical Magazine (5), 11, 229–249.Google Scholar
Thomson, J. J. (1882). The vibrations of a vortex ring, and the action upon each other of two vortices in a perfect fluid, Philosophical Transactions of the Royal Society of London, 173, 493–521.Google Scholar
Thomson, J. J. (1883a). On the theory of electric discharge in gases, Philosophical Magazine (5), 15, 427–434.Google Scholar
Thomson, J. J. (1883b). A Treatise on the Motion of Vortex Rings. London: Macmillan.
Thomson, J. J. (1887). On the dissociation of some gases by the electric discharge, Proceedings of the Royal Society of London, 42, 343–344.Google Scholar
Thomson, J. J. (1893a). Notes on Recent Researches in Electricity and Magnetism. Oxford: Clarendon Press.
Thomson, J. J. (1893b). On the effect of electrification and chemical action on a steam jet and of water vapour on the discharge of electricity through gases, Philosophical Magazine (5), 36, 313–327.Google Scholar
Thomson, J. J. (1895). On the electrolysis of gases, Proceedings of the Royal Society of London, 58, 244–257.Google Scholar
Thomson, J. J. (1896a). On the discharge of electricity produced by Röntgen rays, Proceedings of the Royal Society of London, 59, 274–276.Google Scholar
Thomson, J. J. (1896b). The Röntgen rays, Nature, 53, 391–392.Google Scholar
Thomson, J. J. (1897a). Cathode rays, Journal of the Royal Institution, 15, 1–14.Google Scholar
Thomson, J. J. (1897b). Cathode rays, The Electrician, 39, 104–109.Google Scholar
Thomson, J. J. (1897c). Cathode rays, Philosophical Magazine (5), 44, 293–316.Google Scholar
Thomson, J. J. (1898). On the charge of electricity carried by the ions produced by Röntgen rays, Philosophical Magazine (5), 46, 528–545.Google Scholar
Thomson, J. J. (1899). On the masses of the ions in gases at low pressures, Philosophical Magazine (5), 48, 547–567.Google Scholar
Thomson, J. J. (1903a). Conduction of Electricity through Gases. Cambridge: Cambridge University Press.
Thomson, J. J. (1903b). On the charge of electricity carried by a gaseous ion, Philosophical Magazine (6), 5, 346–355.Google Scholar
Thomson, J. J. (1906a). On the number of corpuscles in an atom, Philosophical Magazine (6), 11, 769–781.Google Scholar
Thomson, J. J. (1906b). Conduction of Electricity through Gases. Cambridge: Cambridge University Press.
Thomson, J. J. (1910). Survey of the last twenty-five years, in A History of the Cavendish Laboratory, 1871–1910, pp. 75–101. London: Longmans, Green and Co.
Thomson, J. J. (1912a). Further experiments on positive rays, Philosophical Magazine (6), 24, 209–253.Google Scholar
Thomson, J. J. (1912b). Ionisation by moving electrified particles, Philosophical Magazine (6), 23, 449–457.Google Scholar
Thomson, J. J. (1913). Rays of positive electricity, Proceedings of the Royal Society of London, A89, 1–20.Google Scholar
Thomson, J. J. (1933). Mr. E. Everett, Nature, 132, 774.Google Scholar
Thomson, J. J. (1936). Recollections and Reminiscences. London: G. Bell and Sons.
Thomson, J. J. and Newall, H. F. (1887). On the rate at which electricity leaks through liquids which are bad conductors of electricity, Proceedings of the Royal Society of London, 42, 410–429.Google Scholar
Thomson, W. (1855). On the theory of the electric telegraph, Proceedings of the Royal Society of London, 7, 382–399.Google Scholar
Thomson, W. and Tait, P. G. (1867). Treatise on Natural Philosophy. Oxford: Oxford University Press.
Timpe, A. (1905). Probleme der spannungsverteilung in ebenen systeme, einfach gelöst mit hilfe der Airyschen funktion (The problem of the stress distribution in a planar system, easily solved using Airy functions), Zeitschrift für Mathematik und Physik, 52, 348–383.Google Scholar
Tosi, G., Christmann, G., Berloff, N. G. et al. (2012). Sculpting oscillators with light within a nonlinear quantum fluid, Nature Physics, 8, 190–194.Google Scholar
Townsend, A. A. (1956). The Structure of Turbulent Shear Flow. Cambridge: Cambridge University Press.
Townsend, A. A. (1990). Early days of turbulence research in Cambridge, Jounral of Fluid Mechanics, 212, 1–5.Google Scholar
Townsend, J. S. (1900). The diffusion of ions in gases, Philosophical Transactions of the Royal Society of London, A193, 129–158.Google Scholar
Townsend, P. (2013). Fundamentals of Terahertz Radiation. http://www.paultownsend.co.uk/research/fundamentals/terahertz-radiation/.
Tsui, D. C., Störmer, H. L., and Gossard, A. C. (1982). Two-dimensional magnetotransport in the extreme quantum limit, Physical Review Letters, 48, 1559–1562.Google Scholar
Turner, R. S. (1970). Hermann von Helmholtz, in Dictionary of Scientific Biography, volume 6, pp. 241–253. New York: Charles Scribner's Sons.
Uhlenbeck, G. E. and Goudsmit, S. (1925). Ersetzung der hypothese vom unmechanischen zwang durch eine forderung bezüglich des inneren verhaltens jedes einzelnen elektrons, Die Naturwissenschaften, 13, 953–954.Google Scholar
Vamivakas, A. N., Lu, C.-Y., Matthiesen, C. et al. (2010). Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence, Nature, 467, 297–300.Google Scholar
van de Graaff, R. J. (1931). A 1,500,000 volt electrostatic generator, Physical Review, 38, 1919–1920.Google Scholar
van der Kloot, W. (2005). Lawrence Bragg's role in the development of sound-ranging in World War I, Notes and Records of the Royal Society, 59, 273–284.Google Scholar
van der Pol, B. (1927). On relaxation-oscillations, Philosophical Magazine (7), 2, 978–992.Google Scholar
Varela, M., Findlay, S. D., Lupini, A. R. et al. (2004). Spectroscopic imaging of single atoms within a bulk solid, Physical Review Letters, 92, 095502.Google Scholar
Villard, P. (1900a). Sur la réflection et la réfraction des rayons cathodique et les rayons déviables de radium (On the reflection and refraction of cathode rays and the deviable rays of radium), Comptes Rendus de l'Academie des Sciences, 130, 1010–1012.Google Scholar
Villard, P. (1900b). Sur le rayonnement du radium (On the radiation of radium), Comptes Rendus de l'Academie des Sciences, 130, 1178–1179.Google Scholar
Vinen, W. F. (1961). The detection of single quanta of circulation in liquid helium II, Proceedings of the Royal Society of London, A260, 218–236.Google Scholar
Volta, A. (1800). On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr. Alexander Volta, F.R.S. Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. K.B. P.R.S., Philosophical Transactions of the Royal Society of London, 90, 403–431.Google Scholar
Volterra, V. (1907). Sur l’équilibre des corps élastique multiplement connexes, Annales Scientifique de l’École Normale Superieur, Suppl. (3), 24, 401–517.Google Scholar
von Halban, H., Joliot, F., and Kowarski, L. (1939). Number of neutrons liberated in the nuclear fission of uranium, Nature, 143, 680.Google Scholar
Wade, J. M., Loram, J. W., Mirza, K. A., Cooper, J. R., and Tallon, J. L. (1994). Electronic specific heat of TL2Ba2Cu6+δ from 2K to 300K for 0<δ<0.1, Journal of Superconductivity, 7, 261–264.Google Scholar
Waldram, J. R. (1964). The surface impedence of superconductors, Advances in Physics, 13, 1–88.Google Scholar
Waldram, J. R. (1975). Chemical potential and boundary resistance at normal– superconducting interfaces, Proceedings of the Royal Society of London, A345, 231–249.Google Scholar
Waldram, J. R. (1996). Superconductivity of Metals and Cuprates. Bristol: IOP Publishing.
Waldram, J. R. and Battersby, S. J. (1992). Thermopower and resistance of superconducting–normal interfaces, I: Theory, Journal of Low Temperature Physics, 86, 1–30.Google Scholar
Waldram, J. R. and Lumley, J.M. (1975). Direct measurement of the current-phase relation in superconducting weak links, Revue de Physique Appliquée, 10, 7–10.Google Scholar
Waldram, J. R., Broun, D. M., Morgan, D. C., Ormeno, R., and Porch, A. (1999). Fluctuation effects in the microwave conductivity of cuprate superconductors, Physical Review B, 59, 1528–1537.Google Scholar
Waldram, J. R., Pippard, A. B., and Clarke, J. (1970). Theory of the current–voltage characteristics of SNS junctions and other superconducting weak links, Philosophical Transactions of the Royal Society of London, A268, 265–287.Google Scholar
Waldram, J. R., Theopistou, P., Porch, A., and Cheah, H.-M. (1997). Two-fluid interpretation of the microwave conductivity of YBa2Cu3O7−δ , Physical Review B, 55, 3222–3229.Google Scholar
Walter, F., Decarli, R., Carilli, C. et al. (2012). The intense starburst HDF 850.1 in a galaxy overdensity at z ≈ 5.2 in the Hubble Deep Field, Nature, 486, 233–236.Google Scholar
Ward, F. A. B., Wynn-Williams, C. E., and Cave|H. M. (1929). The rate of emission of α-particles from radium, Proceedings of the Royal Society of London, A125, 713–730.Google Scholar
Warner, M. and Terentjev, E. M. (2003). Liquid Crystal Elastomers. Oxford: Oxford University Press. The second edition was publihsed in 2007.
Watson, J. D. (1968). The Double Helix: A Personal Account of the Discovery of the Structure of DNA. New York: Athenium.
Watson, J. D. and Crick, F. H. C. (1953a). Genetical implication of the structure of deoxyribonucleic acid, Nature, 171, 964–967.Google Scholar
Watson, J. D. and Crick, F. H. C.(1953b). A structure for deoxyribose nucleic acid, Nature, 171, 737–738.Google Scholar
Weaver, H.,Williams, D., Dieter, N., and Lum, W. (1965). Observations of a strong unidentified microwave line and of emission from the OH molecule, Nature, 208, 29–31.Google Scholar
Weber, W. and Kohlrausch, R. (1856). Über die elektricitätsmenge, welche bei galvanischenen strömen durch den querschnitt der kette fleisst (On the amount of electricity which flows through the cross-section of the circuit in galvanic currents), Annalen der Physik (2), 99, 10–25.Google Scholar
Webster, H. C. (1932). The artificial production of nuclear γ -radiation, Proceedings of the Royal Society of London, A136, 428–453.Google Scholar
Weinreb, S., Meeks, M., Carter, J., Barrett, A., and Rogers, A. (1965). Observations of polarized OH emission, Nature, 208, 440–441.Google Scholar
Wharam, D. A., Thornton, T. J., Newbury, R. et al. (1988). One-dimensional transport and the quantisation of the ballistic resistance, Journal of Physics C: Solid State Physics, 21, L209–L214.Google Scholar
Wheeler, J. M. (1992). Applications of the EDSAC, IEEE Annals of the History of Computing, 14, 27–33.Google Scholar
Whittaker, E. T. (1951). A History of the Theories of Aether and Electricity, Vols I and II. London: Thomas Nelson and Sons. The first edition was published in 1910 and the revised and enlarged edition in 1951.
Wideröe, R. (1928). Über ein neues prinzip zur herstellung hoher spannungen, Archiv für Elektrotechnik, 21(4), 387–406 Google Scholar
Wilhelm, J. O., Misener, A. D., and Clark, A. R. (1935). The viscosity of liquid helium, Proceedings of the Royal Society of London, A151, 342–347.Google Scholar
Wilkins, M. H. F., Stokes, A., and Wilson, H. R. (1953). Molecular structure of deoxypentose nucleic acids, Nature, 171, 738–739.Google Scholar
Willis, R. (1841). Principles of Mechanism. London: John W. Parker.
Willis, R. (1851), System of Apparatus for the Use of Lecturers and Experimenters in Mechanical Philosophy. London: J. Weale.
Willis, R. and Clark, R. W. (1886). Architectural History of the University of Cambridge and of the Colleges of Cambridge and Eton. Cambridge: Cambridge University Press.
Wilson, A. (1984). Theoretical physics in Cambridge in the late 1920s and early 1930s, in Cambridge Physics in the Thirties, ed. Hendry, J., pp. 174–175. Bristol: Adam Hilger.
Wilson, C. T. R. (1897). Condensation of water vapour in the presence of dust-free air and other gases, Philosophical Transactions of the Royal Society of London, A189, 265–306.Google Scholar
Wilson, C. T. R. (1899a). On the comparative efficiency as condensation nuclei of particles and negatively charged ions, Philosophical Transactions of the Royal Society of London, A193, 289–317.Google Scholar
Wilson, C. T. R. (1899b). On the condensation nuclei produced in gases by the action of Röntgen rays, uranium rays, ultraviolet light, and other agents, Philosophical Transactions of the Royal Society of London, A192, 403–452.Google Scholar
Wilson, C. T. R. (1901). On the ionisation of atmospheric air, Proceedings of the Royal Society of London, A68, 151–161.Google Scholar
Wilson, C. T. R. (1912). On an expansion apparatus formaking visible the tracks of ionising particles in gases and some results obtained by its use, Proceedings of the Royal Society of London, A87, 277–292.Google Scholar
Wilson, C.T. R. (1954). Ben Nevis 60 years ago, Weather, 9, 309–311.Google Scholar
Wilson, C. T. R. (1960). Reminiscences of my early years, Notes and Records of The Royal Society, 14, 163–173 Google Scholar
Wilson, D. (1982). Experimentalists among the mathematicians: Physics in the Cambridge Natural Sciences Tripos, 1851–1900, Historical Studies in the Physical Sciences, 12, 325–371.Google Scholar
Wilson, D. (1983). Rutherford: Simple Genius. London: Hodder and Stoughton.
Wilson, H. A. (1903). A determination of the charge on the ions produced in air by Röntgen rays, Philosophical Magazine (6), 6, 429–441.Google Scholar
Wollaston, W. H. (1802). A method of examining refractive and dispersive powers, by prismatic reflection, Philosophical Transactions of the Royal Society, 92, 365–380.Google Scholar
Woodward, R. M., Wallace, V. P., Pye, R. J. et al. (2003). Terahertz pulse imaging of ex vivo basal cell carcinoma, Journal of Investigative Dermatology, 120, 72–78.Google Scholar
Woolfson, M. (2005). William Cochran 1922–2003, Biographical Memoirs of Fellows of the Royal Society, 51, 67–85.Google Scholar
Wynn-Williams, C. E. (1931). The use of thyratrons for high speed automatic counting of physical phenomena, Proceedings of the Royal Society of London, A132, 295–310.Google Scholar
Wynn-Williams, C. E. (1932). A thyratron “scale of two” automatic counter, Proceedings of the Royal Society of London, A136, 312–324.Google Scholar
Wynn-Williams, C. E. (1984). The scale-of-two counter, in Cambridge Physics in the Thirties, ed. Hendry, J., pp. 141–149. Bristol: Adam Hilger.
Yoffe, A. B. (1998). NFM and PCS, in Nevill Mott: Reminiscences and Appreciations, ed. Davis, E. A., pp. 166–168. London: Taylor and Francis.
Young, J. S., Baldwin, J. E., Boysen, R. C. et al. (2000). New views of Betelgeuse: Multiwavelength surface imaging and implications for models of hotspot generation, Monthly Notices of the Royal Astronomical Society, 315, 635–645.Google Scholar
Young, T. (1802). On the theory of light and colours, Philosophical Transactions of the Royal Society, 92, 12–48.Google Scholar
Yuan, Z. L., Kardynal, B. E., Stevenson, R. M. et al. (2002). Electrically driven singlephoton source, Science, 295, 102–105.Google Scholar
Zeeman, P. (1896a). Over den invloed eener magnetisatie op den aard van het door eenstof uitgezonden licht (On the influence of magnetism on the nature of light emitted by a substance), Verslag van de gewone Vergadering der Wis- en Natuurkundige Afdeeling, Koniklijke Akadamie van Wetenschappen te Amsterdam, 5, 181–185. English translations in Philosophical Magazine (5), 43, 226–239, 1897 and Astrophysical Journal, 5, 332–347, 1897.Google Scholar
Zeeman, P. (1896b). Over den invloed eener magnetisatie op den aard van het door eenstof uitgezonden licht (On the influence of magnetism on the nature of light emitted by a substance), Verslag van de gewone Vergadering der Wis- en Natuurkundige Afdeeling,Koniklijke Akadamie van Wetenschappen te Amsterdam, 5, 242–248. English translations in Philosophical Magazine (5), 43, 226–239, 1897 and Astrophysical Journal, 5, 332–347, 1897.
Zeleny, J. (1898). The ratio of velocities of the two ions produced in gases by Röntgen radiation, Philosophical Magazine (5), 46, 120–154.Google Scholar
Zeleny, J. (1900). The velocity of the ions produced in gases by Röntgen rays, Philosophical Transactions of the Royal Society of London, A195, 193–234.Google Scholar
Ziman, J. M. (1960). Electrons and Phonons: The Theory of Transport in Solids. Oxford: Clarendon Press.
Ziman, J. M. (1963). Electrons in Metals: A Short Guide to the Fermi Surface. London: Taylor and Francis.
Ziman, J. M. (1969). Elements of Advanced Quantum Theory. Cambridge: Cambridge University Press.
Ziman, J. M. (1972). Principles of the Theory of Solids. Cambridge: Cambridge University Press.
Zimmerman, J. and Silver, A. H. (1964). Quantum effects in type II superconductors, Physics Letters, 10, 47–48.Google Scholar
Zipkes, C., Palzer, S., Sias, C., and Köhl, M. (2010). A trapped single ion inside a Bose– Einstein condensate, Nature, 464, 388–391.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Malcolm Longair, University of Cambridge
  • Book: Maxwell's Enduring Legacy
  • Online publication: 05 July 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316017890.025
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Malcolm Longair, University of Cambridge
  • Book: Maxwell's Enduring Legacy
  • Online publication: 05 July 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316017890.025
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Malcolm Longair, University of Cambridge
  • Book: Maxwell's Enduring Legacy
  • Online publication: 05 July 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316017890.025
Available formats
×