Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-13T21:18:35.897Z Has data issue: false hasContentIssue false

9 - Radio Frequency Scanning Probe Measurements of Materials

Published online by Cambridge University Press:  21 September 2017

T. Mitch Wallis
Affiliation:
National Institute of Standards and Technology, Boulder
Pavel Kabos
Affiliation:
National Institute of Standards and Technology, Boulder
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

de Groot, S. R. and Suttorp, L. G., Foundations of Electrodynamics (Elsevier, 1972).Google Scholar
Kaatze, U., “Techniques for Measuring the Microwave Dielectric Properties of Materials,” Metrologia 47 (2010) pp. S91S113.Google Scholar
Landau, L. D. and Lifshitz, E. M., Electrodynamics of Continuous Media (Addison-Wesley, 1960).Google Scholar
Jackson, J. D., Classical Electrodynamics, 3rd edn (Wiley, 1999).Google Scholar
Hornreich, R. and Shtrikman, S., “Statistical Mechanics and Origin of the Electromagnetic Effect in Cr2O3,” Physical Review 161 (1967) pp. 506512.Google Scholar
Rado, G. T., “Statistical Theory of Magnetoelectric Effects in Antiferromagnetics,” Physical Review 128 (1962) pp. 25462556.Google Scholar
Baker-Jarvis, J. and Kabos, P., “Dynamic Constitutive Relations for Polarization and Magnetization,” Physical Review E 64 (2001) art. no. 056127.Google Scholar
Baker-Jarvis, J., Kabos, P., and Holloway, C., “Nonequilibrium Electromagnetics: Local and Macroscopic Fields and Constitutive Relationships,” Physical Review E 70 (2004) art. no. 036615.Google Scholar
Anlage, S. M., Talanov, V. V., and Schwartz, A. R., “Principles of Near Field Microscopy.” In Scanning Probe Microscopy, vol. 1, (Kalinin, S. and Gruverman, A., eds.) (Springer, 2007).Google Scholar
Reznik, A. N. and Yurasova, N. V., “Electrodynamics of Microwave Near Field Probing: Application to Medical Diagnostics,” Journal of Applied Physics 98 (2005) art. no. 114701.Google Scholar
Lee, S.-C, Vlahacos, C. P., Feenstra, B. J., Schwartz, A., Steinhauer, D. E., Wellstood, F. C., and Anlage, S. M., “Magnetic Permeability Imaging of Metals with Scanning Near-Field Microwave Microscope,” Applied Physics Letters 77 (2000) pp. 44044406.Google Scholar
Reznik, A. N., “Electromagnetic Model for Near Field Microwave Microscope with Atomic Resolution: Determination of Tunnel Junction Impedance,” Applied Physics Letters 105 (2014) art. no. 083512.Google Scholar
Hovsepyan, A., Babajanyan, A., Sargsyan, T., Melikyan, H., Kim, S., Kim, J., Lee, K and Friedman, B., “Direct Imaging of Photoconductivity of Solar Cells by Using Near-Field Scanning Microwave Probe,” Journal of Applied Physics 106 (2009) art. no. 114901.Google Scholar
Wait, J. R., Electromagnetic Waves in Stratified Media (Pergamon Press, 1962).Google Scholar
Wait, J. R., Wave Propagation Theory (Pergamon Press, 1981).Google Scholar
Chew, W., Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, 1990).Google Scholar
Gao, C. and Xiang, X.-D., “Quantitative microwave near field microscopy of dielectric properties,” Review of Scientific Instruments 69 (1998) pp. 38463851.CrossRefGoogle Scholar
Kochanski, G. P., “Nonlinear Alternating-Current Tunneling Microscopy,” Physical Review Letters 62 (1989) pp. 22852288.CrossRefGoogle ScholarPubMed
Tabib-Azar, M., Su, D. -P., Pohar, A., LeClair, S. R., and Pochak, G., “0.4 μm Spatial Resolution with 1 GHz (λ=30cm) Evanescent Microwave Probe,” Review of Scientific Instruments 70 (1999) pp. 17251729.CrossRefGoogle Scholar
Tabib-Azar, M. and LeClair, S. R., “Novel Hydrogen Sensors Using Evanescent Microwave Probes,” Review of Scientific Instruments 70 (1999) pp. 37073713.Google Scholar
Kleinsmit, R. A., Kazimierczuk, M. K. and Kozlowski, G., “Sensitivity and Resolution of Evanescent Microwave Microscope,” IEEE Transactions on Microwave Theory and Techniques 54 (2006) pp. 639647.Google Scholar
Stranick, S. J. and Weiss, P. S., “A Versatile Microwave-Frequency-Compatible Scanning Tunneling Microscope,” Review of Scientific Instruments 64 (1993) pp. 12321234.CrossRefGoogle Scholar
Cho, Y., “Scanning Nonlinear Dielectric Microscope with Super High Resolution,” Japanese Journal of Applied Physics 46 (2007) pp. 44284434.Google Scholar
Smoliner, J., Huber, H. P., Hochleitner, M., Moertelmaier, M., and Kienberger, F., “Scanning Microwave Microscopy/Spectroscopy on Metal Oxide Semiconductor Systems,” Journal of Applied Physics 108 (2010) art. no. 064315.CrossRefGoogle Scholar
Hill, D. A., Electromagnetic Field in Cavities, IEEE Press Series on Electromagnetic wave theory (John Wiley and Sons, 2009).Google Scholar
Tselev, A., Anlage, S. M., Ma, Z. and Melngailis, J., “Broadband Dielectric Microwave Microscopy on Micron Length Scales,” Review of Scientific Instruments 78 (2007) art. no. 044701.Google Scholar
Pozar, D. M., Microwave Engineering, 2nd edn. (Wiley, 1998).Google Scholar
McKinstry, K. D. and Patton, C. E., “Methods for Determination of Microwave Cavity Quality Factors from Equivalent Circuit Models,” Review of Scientific Instruments 60 (1989) pp. 439443.Google Scholar
Imtiaz, A., Baldwin, T., Nembach, H. T., Wallis, T. M. and Kabos, P., “Near Field Microscope Measurements to Characterize Bulk Material Properties,” Applied Physics Letters 90 (2007) art. no. 243105.Google Scholar
Barker, D. J., Jackson, T. J., Suherman, P. M., Gashinova, M. S., and Lancaster, M. J., “Uncertainties in the Permittivity of Thin Films Extracted from the Measurements with Near Field Microwave Microscopy Calibrated by Image Charge Model,” Measurement Science and Technology 25 (2014) art. no. 105601.Google Scholar
Oliver, R. A., “Advances in AFM for the Electrical Characterization of Semiconductors,” Reports on Progress in Physics 71 (2008) art. no. 076501.Google Scholar
Huber, H. P., Humer, I., Hochleitner, M., Fenner, M., Moertelmaier, M., Rankl, C., Imtiaz, A., Wallis, T. M., Tanbakuchi, H., Hinterdorfer, P., Kabos, P., Smoliner, J., Kopanski, J. J., and Kienberger, F., “Calibrated Nanoscale Dopant Profiling Using Scanning Microwave Microscope,” Journal of Applied Physics 111 (2012) art. no. 014301.Google Scholar
Sze, S. M., The Physics of Semiconductor Devices (Wiley, 1981).Google Scholar
Kopanski, J. J., Marchiando, J. F., and Lowney, J. R., “Scanning Capacitance Microscopy Applied to Two-Dimensional Dopant Profiling of Semiconductors,” Materials Science and Engineering B: Solid-State Materials for Advance Technology 44 (1997) pp. 4651.Google Scholar
Marchiando, J. F., Kopanski, J. J., and Lowney, J. R., “Model Database for Determining Dopant Profiles from Scanning Capacitance Microscope Measurements,” Journal of Vacuum Science and Technology B 16 (1998) pp. 463470.Google Scholar
Smoliner, J., Basnar, B., Golka, S., Gornik, E., Lo¨ffler, B., Schatzmayr, M., and Enichlmair, H., “Mechanism of Bias-Dependent Contrast in Scanning-Capacitance Microscopy Images,” Applied Physics Letters 79 (2001) pp. 31823184.CrossRefGoogle Scholar
Imtiaz, A., Anlage, S. M., Barry, J. D. and Melngailis, J., “Nanometer-Scale Material Contrast Imaging with a Near-Field Microwave Microscope,” Applied Physics Letters 90 (2007) art. no. 143106.Google Scholar
Imtiaz, A., Wallis, T. M., Lim, S.-H., Tanbakuchi, H., Huber, H.-P., Hornung, A., Hinterdorfer, P., Smoliner, J., Kienberger, F., and Kabos, P., “Frequency Selective Contrast on Variable Doped p-type Silicon with a Scanning Microwave Microscope,” Journal of Applied Physics 111 (2012) art. no. 093727.Google Scholar
Nicollian, E. H. and Brews, J. R., MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, 1982).Google Scholar
Cho, Y., Kirihara, A., and Saeki, T., “Scanning Nonlinear Dielectric Microscope,” Review of Scientific Instruments 67 (1996) pp. 22972303.CrossRefGoogle Scholar
Cho, Y., Kazuta, S., and Matsuura, K., “Scanning Nonlinear Dielectric Microscopy with Nanometer Resolution,” Applied Physics Letters 75 (1999) pp. 28332835.Google Scholar
Hirose, R., Ohara, K., and Cho, Y., “Observation of the Si(111) 7x7 Atomic Structure Using Noncontact Scanning Nonlinear Dielectric Microscopy,” Nanotechnology 18 (2007) art. no. 084014.Google Scholar
Tanaka, K., Kurihashi, Y., Uda, T., Daimon, Y., Odagawa, N., Hirose, R., Hiranaga, Y., and Cho, Y., “Scanning Nonlinear Dielectric Microscopy Nano-science and Technology for Next Generation High Density Ferroelectric Data Storage,” Japanese Journal of Applied Physics 47 (2008) pp. 33113325.Google Scholar
Cho, Y., “Scanning Nonlinear Dielectric Microscopy,” Journal of Materials Research 26 (2011) pp. 20072016.Google Scholar
Bonnel, D. A., Basov, D. N., Bode, M., Diebold, U., Kalinin, S. V., Madhavan, V., Novotny, L., Salmeron, M., Schwartz, U. D., and Weiss, P. S., “Imaging Physical Phenomena with Local Probes: From Electrons to Photons,” Reviews of Modern Physics 84 (2012) pp. 13431381.Google Scholar
Baker-Jarvis, J. and Kim, S., “The Interaction of Radio-Frequency Fields with Dielectric Materials at Macroscopic to Mesoscopic Scales,” Journal of Research of the National Institute of Standards and Technology 117 (2012) pp. 160.Google Scholar
Queffelec, P., Le Floc’h, M., and Gelin, P., “Broad-Band Characterization of Magnetic and Dielectric Thin Films Using a Microstrip Line,” IEEE Transactions on Instrumentation and Measurement 47 (1998) pp. 956963.Google Scholar
Huang, S., Christen, H. M., and Reeves, M. E., “Parameter-Free Extraction of Thin-Film Dielectric Constants from Scanning Near Field Microwave Microscope Measurements,” Naval Research Laboratory, Washington DC, Technical Report ADA524131, (2010). (Also in arXiv:00909.3579v1 [cond-mat.sci] September 19, 2009).Google Scholar
Lee, J. H., Hyun, S., and Char, K., “Quantitative Analysis of Scanning Microwave Microscopy on Dielectric Thin Film by Finite Element Calculation,” Review of Scientific Instruments 72 (2001) pp. 14251434.Google Scholar
Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S. K. and Colombo, L., “Electronics Based on Two-Dimensional Materials,” Nature Nanotechnology 9 (2014) pp. 768779.Google Scholar
Geim, A. K. and Grigorieva, I. V., “Van der Waals heterostructures,” Nature 499 (2013) pp. 419425.Google Scholar
Tselev, A., Lavrik, N. V., Vlassiouk, I., Briggs, D. P., Rutgers, M., Proksch, R. and Kalinin, S. V., “Near-Field Microwave Scanning Probe Imaging of Conductivity Inhomogeneities in CVD Graphene,” Nanotechnology 23 (2012) art. no. 385706.Google Scholar
Monti, T., Di Donato, A., Mencarelli, D., Venanzoni, G., Morini, A., and Farina, M., “Near-Field Microwave Investigation of Electrical Properties of Graphene-ITO Electrodes for LED Applications,” Journal of Display Technology 9 (2013) pp. 504510.CrossRefGoogle Scholar
Hao, L., Gallop, J., Goniszewski, S., Shaforost, O., Klein, N., and Yakimova, R., “Non-contact Method for Measurement of Microwave Conductivity of Graphene,” Applied Physics Letters 103 (2013) art. no. 123103.Google Scholar
Tselev, A., Sangwan, V. K., Jariwala, D., Marks, T., Lauhon, L. J., Hersam, M. C., and Kalinin, S. V., “Near Field Microwave Microscopy of High-k Oxides Grown on Graphene with an Organic Seed Layer,” Applied Physics Letters 103 (2013) art. no. 243105.Google Scholar
Talanov, V. V., Del Barga, C., Wickey, L., Kalichava, I., Gonzales, E., Shaner, E. A., Gin, A. V., and Kalugin, N. G., “Few-Layer Graphene Characterization by Near-Field Scanning Microwave Microscopy,” ACS Nano 4 (2010) pp. 38313838.Google Scholar
Kang, S., Burke, P. J., Pfeiffer, L. N., West, K. W., “AC Ballistic Transport in a Two-Dimensional Electron Gas Measured in GaAs/AlGaAs Heterostructures,” Physical Review B 72 (2005) art. no. 165312.Google Scholar
Luryi, S., “Quantum Capacitance Devices,” Applied Physics Letters 52 (1988) pp. 501503.Google Scholar
John, D. L., Castro, L. C., and Pulfrey, D. L., “Quantum Capacitance in Nanoscale Device Modeling,” Journal of Applied Physics 96 (2004) pp. 51805184.Google Scholar
Fang, T., Konar, A., Xing, H., and Jena, D., “Carrier Statistics and Quantum Capacitance of Graphene Sheets and Ribbons,” Applied Physics Letters 91 (2007) art. no. 092109.Google Scholar
Xia, J., Chen, F., Li, J. and Tao, N., “Measurement of the Quantum Capacitance of Graphene,” Nature Nanotechnology 4 (2009) pp. 505509.Google Scholar
Giannazzo, F., Sonde, S., Raineri, V., and Rimini, E., “Screening Length and Quantum Capacitance in Graphene by Scanning Probe Microscopy,” Nano Letters 9 (2009) pp. 2329.CrossRefGoogle ScholarPubMed
Hua Wang, Q., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. and Strano, M. S., “Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides,” Nature Nanotechnology 7 (2012) pp. 699712.Google Scholar
Berweger, S., Weber, J. C., John, J., Velazquez, J. M., Pieterick, A., Sanford, N. A., Davydov, A. V., Brunschwig, B., Lewis, N. S., Wallis, T. M., and Kabos, P., “Microwave Near-Field Imaging of Two-Dimensional Semiconductors,” Nano Letters 15 (2015) pp. 11221127.Google Scholar
Kadantsev, E. S. and Hawrylak, P., “Electronic Structure of Single MoS2 Monolayer,” Solid State Communications 152 (2012) pp. 909913.Google Scholar
Kuc, A., Zibouche, N., and Heine, T., “Influence of Quantum Confinement on the Electronic Structure of the Transition Metal Sulfide TS2,” Physical Review B 83 (2011) art. no. 245213.Google Scholar
Beal, A. R., Hughes, H. P., and Liang, W. Y., “The Reflectivity Spectra of Some Group VA Transition Metal Dichalcogenides,” Journal of Physics C 8 (1975) pp. 42364248.Google Scholar
Wilson, J. A., Di Salvo, F. J., and Mahajan, S., “Charge-Density Waves and Superlattices in the Metallic Layered Transition Metal Dichalcogenides,” Advances in Physic. 24 (1975) pp. 117201.Google Scholar
Mak, K. F., Lee, C., Hone, J., Shan, J., and Heinz, T. F., “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Physical Review Letters 105 (2010) art. no. 136805.Google Scholar
Kam, K. K. and Parkinson, B. A., “Detailed Photocurrent Spectroscopy of the Semiconducting Group-VI Transition-Metal Dichalcogenides,” Journal of Physical Chemistry 86 (1982) pp. 463467.Google Scholar
Liu, L., Kumar, S. B., Ouyang, Y., and Guo, J., “Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors,” IEEE Transactions on Electron Devices 58 (2011) pp. 30423047.Google Scholar
Ding, Y., Wang, Y., Ni, J., Shi, L., Shi, S., and Tang, W., “First Principles Study of Structural, Vibrational and Electronic Properties of Graphene-Like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) Monolayers,” Physica B: Condensed Matter 406 (2011) pp. 22542260.Google Scholar
Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th edn, vol. B7 (Springer, 1995).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×