Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-04T08:17:01.416Z Has data issue: false hasContentIssue false

Chapter 14 - Evolving Concepts for the Assessment and Treatment of Schizophrenia

Focus on Negative Symptoms and Cognitive Impairment

Published online by Cambridge University Press:  01 February 2024

Andrea Fiorillo
Affiliation:
University of Campania “L. Vanvitelli”, Naples
Peter Falkai
Affiliation:
Ludwig-Maximilians-Universität München
Philip Gorwood
Affiliation:
Sainte-Anne Hospital, Paris
Get access

Summary

Schizophrenia is a disabling and complex mental disorder that has a negative impact on the real-life functioning of people suffering from this disease, with a consequent huge burden on patients, on their families, and on the healthcare system. Despite the available interventions, only about 15% of subjects with schizophrenia meet the criteria for recovery. This might be due to the fact that available treatments do not satisfactorily target aspects that greatly influence schizophrenia functional outcome, such as negative symptoms and cognitive impairment. Despite the broad consensus on the definition of different negative symptom and cognitive function domains, these aspects are not always assessed in line with current conceptualization, and they are still poorly recognized and often neglected by physicians, family members/caregivers, and the patient himself/herself as they cause much less concern than other clinical features. In this chapter we focus on negative symptoms and cognitive impairment as the two most neglected schizophrenia dimensions in terms of assessment and treatment; we also provide an update of preclinical and clinical research and its relevance to clinical and research practice, and suggest future directions in the field.

Type
Chapter
Information
Mental Health Research and Practice
From Evidence to Experience
, pp. 228 - 258
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Owen, M. J., Sawa, A., and Mortensen, P. B., Schizophrenia. Lancet, 2016. 388(10039): pp. 8697.CrossRefGoogle ScholarPubMed
Howes, O. D., McCutcheon, R., Agid, O., et al., Treatment-resistant schizophrenia: Treatment Response and Resistance in Psychosis (TRRIP) working group consensus guidelines on diagnosis and terminology. Am J Psychiatry, 2017. 174(3): pp. 216229.CrossRefGoogle Scholar
Stilo, S. A. and Murray, R. M., Non-genetic factors in schizophrenia. Curr Psychiatry Rep, 2019. 21(10): pp. 100.CrossRefGoogle ScholarPubMed
Correll, C. U. and Schooler, N. R., Negative symptoms in schizophrenia: A review and clinical guide for recognition, assessment, and treatment. Neuropsychiatr Dis Treat, 2020. 16: pp. 519534.CrossRefGoogle ScholarPubMed
Galderisi, S., Rucci, P., Mucci, A, et al., The interplay among pychopathology, personal resources, context-related factors and real-life functioning in schizophrenia: Stability in relationships after 4 years and differences in network structure between recovered and non-recovered patients. World Psychiatry, 2020. 19(1): pp. 8191.CrossRefGoogle Scholar
Maj, M., van Os, J., De Hert, M., et al. The clinical characterization of the patient with primary psychosis aimed at personalization of management. World Psychiatry, 2021. 20(1): pp. 433.CrossRefGoogle ScholarPubMed
Santo-Angles, A., Salvador, R., Gomar, J. J., et al., Interindividual variability of functional connectome in schizophrenia. Schizophr Res, 2021. 235: pp. 6573.CrossRefGoogle ScholarPubMed
Gaebel, W. and Zielasek, J., Schizophrenia in 2020: Trends in diagnosis and therapy. Psychiatry Clin Neurosci, 2015. 69(11): pp. 661673.CrossRefGoogle ScholarPubMed
Gaebel, W., Riesbeck, M., Larach, V. W., Falkai, P., and Zielasek, J., Trends in Schizophrenia Diagnosis and Treatment, in Advances in Psychiatry, Javed, A. and Fountoulakis, K. N. (Eds.), 2019. Cham: Springer International Publishing, pp. 603619.CrossRefGoogle Scholar
Leucht, S., Corves, C., Arbter, D., et al., Second-generation versus first-generation antipsychotic drugs for schizophrenia: A meta-analysis. Lancet, 2009. 373(9657): pp. 3141.CrossRefGoogle ScholarPubMed
Harvey, P. D. and Strassnig, M., Predicting the severity of everyday functional disability in people with schizophrenia: Cognitive deficits, functional capacity, symptoms, and health status. World Psychiatry, 2012. 11(2): pp. 73–9.CrossRefGoogle ScholarPubMed
Fleischhacker, W. W., Arango, C., Arteel, P., et al., Schizophrenia – time to commit to policy change. Schizophr Bull, 2014. 40 Suppl 3(Suppl 3): pp. S165–94.Google Scholar
Galderisi, S., Rossi, A., Rocca, P., et al., The influence of illness-related variables, personal resources and context-related factors on real-life functioning of people with schizophrenia. World Psychiatry, 2014. 13(3): pp. 275287.CrossRefGoogle ScholarPubMed
Green, M. F., Horan, W. P., Lee, J., et al., Social disconnection in schizophrenia and the general community. Schizophr Bull, 2018. 44(2): pp. 242249.CrossRefGoogle ScholarPubMed
Harvey, P. D., Strassnig, M. T., and Silberstein, J., Prediction of disability in schizophrenia: Symptoms, cognition, and self-assessment. J Exp Psychopathol, 2019. 10(3): p. 2043808719865693.CrossRefGoogle Scholar
Galderisi, S., Rucci, P., Kirkpatrick, B., et al., Interplay among psychopathologic variables, personal resources, context-related factors, and real-life functioning in individuals with schizophrenia: A network analysis. JAMA Psychiatry, 2018. 75(4): pp. 396404.CrossRefGoogle ScholarPubMed
Mucci, A., Galderisi, S., Gibertoni, D., et al., Factors associated with real-life functioning in persons with schizophrenia in a 4-year follow-up study of the Italian Network for Research on Psychoses. JAMA Psychiatry, 2021. 78(5): pp. 550559.CrossRefGoogle Scholar
Giuliani, L., Giordano, G. M., Bucci, P., et al., Improving knowledge on pathways to functional outcome in schizophrenia: Main results from the Italian Network for Research on Psychoses. Front Psychiatry, 2021. 12: pp. 791117.CrossRefGoogle ScholarPubMed
Galderisi, S., Mucci, A., Bitter, I., et al., Persistent negative symptoms in first episode patients with schizophrenia: Results from the European First Episode Schizophrenia Trial. Eur Neuropsychopharmacol, 2013. 23(3): pp. 196204.CrossRefGoogle ScholarPubMed
Lieberman, J. A., Small, S. A., and Girgis, R. R., Early detection and preventive intervention in schizophrenia: From fantasy to reality. Am J Psychiatry, 2019. 176(10): pp. 794810.CrossRefGoogle ScholarPubMed
Mohr, P., Galderisi, S., Boyer, P., et al., Value of schizophrenia treatment I: The patient journey. Eur Psychiatry, 2018. 53: pp. 107115.CrossRefGoogle ScholarPubMed
Jääskeläinen, E., Juola, P., Hirvonen, N., et al., A systematic review and meta-analysis of recovery in schizophrenia. Schizophr Bull, 2013. 39(6): pp. 12961306.CrossRefGoogle ScholarPubMed
Zipursky, R. B. and Agid, O., Recovery, not progressive deterioration, should be the expectation in schizophrenia. World Psychiatry, 2015. 14(1): pp. 9496.CrossRefGoogle Scholar
Vita, A. and Barlati, S., Recovery from schizophrenia: is it possible? Curr Opin Psychiatry, 2018. 31(3): pp. 246255.CrossRefGoogle ScholarPubMed
Galderisi, S., Kaiser, S., Bitter, I., et al., EPA guidance on treatment of negative symptoms in schizophrenia. Eur Psychiatry, 2021. 64(1): p. e21.CrossRefGoogle ScholarPubMed
Galderisi, S., Mucci, A., Dollfus, S., et al., EPA guidance on assessment of negative symptoms in schizophrenia. Eur Psychiatry, 2021. 64(1): p. e23.CrossRefGoogle ScholarPubMed
Harvey, P. D., When does cognitive decline occur in the period prior to the first episode of schizophrenia? Psychiatry (Edgmont), 2009. 6(7): pp. 1214.Google Scholar
Austin, S. F., Mors, O., Budtz-Jørgensen, E., et al., Long-term trajectories of positive and negative symptoms in first episode psychosis: A 10-year follow-up study in the OPUS cohort. Schizophr Res, 2015. 168(1–2): pp. 8491.CrossRefGoogle Scholar
Tripathi, A., Kar, S. K., and Shukla, R., Cognitive deficits in schizophrenia: Understanding the biological correlates and remediation strategies. Clin Psychopharmacol Neurosci, 2018. 16(1): pp. 717.CrossRefGoogle ScholarPubMed
Lieberman, J. A., Alvir, J. M., Koreen, A., et al., Psychobiologic correlates of treatment response in schizophrenia. Neuropsychopharmacology, 1996. 14(3 Suppl): pp. 13s21s.CrossRefGoogle ScholarPubMed
Emsley, R., Chiliza, B., Asmal, L., and Harvey, B. H., The nature of relapse in schizophrenia. BMC Psychiatry, 2013. 13: p. 50.CrossRefGoogle ScholarPubMed
Gaebel, W. and Riesbeck, M., Revisiting the relapse predictive validity of prodromal symptoms in schizophrenia. Schizophr Res, 2007. 95(1): pp. 1929.CrossRefGoogle ScholarPubMed
Gaebel, W., Riesbeck, M., Wölwer, W., et al., Relapse prevention in first-episode schizophrenia–maintenance vs intermittent drug treatment with prodrome-based early intervention: Results of a randomized controlled trial within the German Research Network on Schizophrenia. J Clin Psychiatry, 2011. 72(2): pp. 205218.CrossRefGoogle Scholar
Andreasen, N. C., Carpenter, W. T., Jr., Kane, J. M., et al., Remission in schizophrenia: Proposed criteria and rationale for consensus. Am J Psychiatry, 2005. 162(3): pp. 441449.CrossRefGoogle ScholarPubMed
Schennach, R., Obermeier, M., Spellmann, I., et al., Remission in schizophrenia – What are we measuring? Comparing the consensus remission criteria to a CGI-based definition of remission and to remission in major depression. Schizophr Res, 2019. 209: pp. 185192.CrossRefGoogle ScholarPubMed
Amering, M. and Schmolke, M., Recovery in Mental Health: Reshaping Scientific and Clinical Responsibilities. 2009, Chichester: Wiley-Blackwell.CrossRefGoogle Scholar
Van Eck, R. M., Burger, T. J., Vellinga, A., Schirmbeck, F., and de Haan, L., The relationship between clinical and personal recovery in patients with schizophrenia spectrum disorders: A systematic review and meta-analysis. Schizophr Bull, 2018. 44(3): pp. 631642.CrossRefGoogle ScholarPubMed
Silverstein, S. M. and Bellack, A. S., A scientific agenda for the concept of recovery as it applies to schizophrenia. Clin Psychol Rev, 2008. 28(7): pp. 11081124.CrossRefGoogle ScholarPubMed
Roe, D., Mashiach-Eizenberg, M., and Lysaker, P. H., The relation between objective and subjective domains of recovery among persons with schizophrenia-related disorders. Schizophr Res, 2011. 131(1–3): pp. 133138.CrossRefGoogle ScholarPubMed
Shrivastava, A., Johnston, M., Shah, N., and Bureau, Y., Redefining outcome measures in schizophrenia: Integrating social and clinical parameters. Curr Opin Psychiatry, 2010. 23(2): pp. 120126.CrossRefGoogle ScholarPubMed
Harvey, P. D. and Bellack, A. S., Toward a terminology for functional recovery in schizophrenia: Is functional remission a viable concept? Schizophr Bull, 2009. 35(2): pp. 300306.CrossRefGoogle Scholar
Leung, W. W., Bowie, C. R., and Harvey, P. D., Functional implications of neuropsychological normality and symptom remission in older outpatients diagnosed with schizophrenia: A cross-sectional study. J Int Neuropsychol Soc, 2008. 14(3): pp. 479488.CrossRefGoogle ScholarPubMed
Harvey, P. D., Assessment of everyday functioning in schizophrenia: Implications for treatments aimed at negative symptoms. Schizophr Res, 2013. 150(2–3): pp. 353–5.CrossRefGoogle ScholarPubMed
Galderisi, S., Rossi, A., Rocca, P., et al., Pathways to functional outcome in subjects with schizophrenia living in the community and their unaffected first-degree relatives. Schizophr Res, 2016. 175(1–3): pp. 154160.CrossRefGoogle ScholarPubMed
Leifker, F. R., Patterson, T. L., Heaton, R. K., and Harvey, P. D., Validating measures of real-world outcome: The results of the VALERO expert survey and RAND panel. Schizophr Bull, 2011. 37(2): pp. 334343.CrossRefGoogle ScholarPubMed
Harvey, P. D., Raykov, T., Twamley, E. W., et al., Validating the measurement of real-world functional outcomes: Phase I results of the VALERO study. Am J Psychiatry, 2011. 168(11): pp. 11951201.CrossRefGoogle ScholarPubMed
Sabbag, S., Twamley, E. M., Vella, L., et al., Assessing everyday functioning in schizophrenia: Not all informants seem equally informative. Schizophr Res, 2011. 131(1–3): pp. 250255.CrossRefGoogle ScholarPubMed
Montemagni, C., Rocca, P., Mucci, A., Galderisi, S., and Maj, M., Italian version of the “Specific Level of Functioning.J Psychopathol, 2015. 21: pp. 287296.Google Scholar
Galderisi, S., Mucci, A., and Bucci, P., Scale e strumenti “ecologici” di valutazione del funzionamento psicosociale nella schizofrenia, in La riabilitazione cognitiva della schizofrenia, Vita, A. (Ed.). 2013. Milan: Springer, pp. 93103.CrossRefGoogle Scholar
Harvey, P. D. and Velligan, D. I., International assessment of functional skills in people with schizophrenia. Innov Clin Neurosci, 2011. 8(1): pp. 1518.Google ScholarPubMed
Bleuer, E., Dementia Praecox or the Group of Schizophrenias. 1950, New York: NY International Universities Press.Google Scholar
Kraepelin, E., Dementia praecox and paraphrenia, in Textbook of Psychiatry, 8th ed., Barclay, E. S. (Ed.), 1919. Edinburgh: Chicago Medical Book Co.Google Scholar
Ventura, J., Hellemann, G. S., Thames, A. D., Koellner, V., and Nuechterlein, K. H., Symptoms as mediators of the relationship between neurocognition and functional outcome in schizophrenia: A meta-analysis. Schizophr Res, 2009. 113(2–3): pp. 189199.CrossRefGoogle ScholarPubMed
Marder, S. R. and Galderisi, S., The current conceptualization of negative symptoms in schizophrenia. World Psychiatry, 2017. 16(1): pp. 1424.CrossRefGoogle ScholarPubMed
Galderisi, S., Mucci, A., Buchanan, R. W., and Arango, C., Negative symptoms of schizophrenia: New developments and unanswered research questions. Lancet Psychiatry, 2018. 5(8): pp. 664677.CrossRefGoogle ScholarPubMed
Santesteban-Echarri, O., Paino, M., Rice, S., et al., Predictors of functional recovery in first-episode psychosis: A systematic review and meta-analysis of longitudinal studies. Clin Psychol Rev, 2017. 58: pp. 5975.CrossRefGoogle ScholarPubMed
Watson, P., Zhang, J. P., Rizvi, A., et al., A meta-analysis of factors associated with quality of life in first episode psychosis. Schizophr Res, 2018. 202: pp. 2636.CrossRefGoogle ScholarPubMed
Leclerc, E., Noto, C., Bressan, R. A., and Brietzke, E., Determinants of adherence to treatment in first-episode psychosis: a comprehensive review. Braz J Psychiatry, 2015. 37(2): pp. 168176.CrossRefGoogle ScholarPubMed
Kirkpatrick, B., Fenton, W. S., Carpenter, W. T., Jr., and Marder, S. R., The NIMH-MATRICS consensus statement on negative symptoms. Schizophr Bull, 2006. 32(2): pp. 214219.CrossRefGoogle ScholarPubMed
Heerey, E. A. and Gold, J. M., Patients with schizophrenia demonstrate dissociation between affective experience and motivated behavior. J Abnorm Psychol, 2007. 116(2): pp. 268278.CrossRefGoogle ScholarPubMed
Waltz, J. A., Frank, M. J., Robinson, B. M., and Gold, J. M., Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction. Biol Psychiatry, 2007. 62(7): pp. 756764.CrossRefGoogle ScholarPubMed
Kring, A. M. and Moran, E. K., Emotional response deficits in schizophrenia: Insights from affective science. Schizophr Bull, 2008. 34(5): pp. 819834.CrossRefGoogle ScholarPubMed
Barch, D. M. and Dowd, E. C., Goal representations and motivational drive in schizophrenia: The role of prefrontal-striatal interactions. Schizophr Bull, 2010. 36(5): pp. 919934.CrossRefGoogle ScholarPubMed
Cohen, A. S. and Minor, K. S., Emotional experience in patients with schizophrenia revisited: Meta-analysis of laboratory studies. Schizophr Bull, 2010. 36(1): pp. 143150.CrossRefGoogle ScholarPubMed
Foussias, G. and Remington, G., Negative symptoms in schizophrenia: Avolition and Occam’s razor. Schizophr Bull, 2010. 36(2): pp. 359369.CrossRefGoogle ScholarPubMed
Dowd, E. C. and Barch, D. M., Pavlovian reward prediction and receipt in schizophrenia: Relationship to anhedonia. PLoS One, 2012. 7(5): p. e35622.CrossRefGoogle ScholarPubMed
Simpson, E. H., Waltz, J. A., Kellendonk, C., and Balsam, P. D., Schizophrenia in translation: Dissecting motivation in schizophrenia and rodents. Schizophr Bull, 2012. 38(6): pp. 11111117.CrossRefGoogle ScholarPubMed
Strauss, G. P., The emotion paradox of anhedonia in schizophrenia: Or is it? Schizophr Bull, 2013. 39(2): pp. 247250.CrossRefGoogle Scholar
Morris, R. W., Quail, S., Griffiths, K. R., Green, M. J., and Balleine, B. W., Corticostriatal control of goal-directed action is impaired in schizophrenia. Biol Psychiatry, 2015. 77(2): pp. 187195.CrossRefGoogle ScholarPubMed
Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L., and Hommer, D., Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport, 2001. 12(17): pp. 36833687.CrossRefGoogle ScholarPubMed
Horan, W. P., Kring, A. M., and Blanchard, J. J., Anhedonia in schizophrenia: A review of assessment strategies. Schizophr Bull, 2006. 32(2): pp. 259273.CrossRefGoogle ScholarPubMed
Gard, D. E., Kring, A. M., Gard, M. G., Horan, W. P., and Green, M. F., Anhedonia in schizophrenia: Distinctions between anticipatory and consummatory pleasure. Schizophr Res, 2007. 93(1–3): pp. 253260.CrossRefGoogle ScholarPubMed
Blanchard, J. J., Kring, A. M., Horan, W. P., and Gur, R., Toward the next generation of negative symptom assessments: The collaboration to advance negative symptom assessment in schizophrenia. Schizophr Bull, 2011. 37(2): pp. 291299.CrossRefGoogle Scholar
Gold, J. M., Waltz, J. A., Matveeva, T. M., et al., Negative symptoms and the failure to represent the expected reward value of actions: Behavioral and computational modeling evidence. Arch Gen Psychiatry, 2012. 69(2): pp. 129138.CrossRefGoogle ScholarPubMed
Horan, W. P., Kring, A. M., Gur, R. E., Reise, S. P., and Blanchard, J. J., Development and psychometric validation of the Clinical Assessment Interview for Negative Symptoms (CAINS). Schizophr Res, 2011. 132(2–3): pp. 140145.CrossRefGoogle ScholarPubMed
Strauss, G. P., Horan, W. P., Kirkpatrick, B, et al., Deconstructing negative symptoms of schizophrenia: Avolition-apathy and diminished expression clusters predict clinical presentation and functional outcome. J Psychiatr Res, 2013. 47(6): pp. 783790.CrossRefGoogle ScholarPubMed
Kaiser, S., Lyne, J., Agartz, I., et al., Individual negative symptoms and domains – Relevance for assessment, pathomechanisms and treatment. Schizophr Res, 2017. 186: pp. 3945.CrossRefGoogle ScholarPubMed
Blanchard, J. J., Horan, W. P., and Collins, L. M., Examining the latent structure of negative symptoms: Is there a distinct subtype of negative symptom schizophrenia? Schizophr Res, 2005. 77(2–3): pp. 151165.CrossRefGoogle Scholar
Strauss, G. P., Hong, L. E., Gold, J. M., et al., Factor structure of the Brief Negative Symptom Scale. Schizophr Res, 2012. 142(1–3): pp. 9698.CrossRefGoogle ScholarPubMed
Engel, M., Fritzsche, A., and Lincoln, T. M., Validation of the German version of the Clinical Assessment Interview for Negative Symptoms (CAINS). Psychiatry Res, 2014. 220(1–2): pp. 659663.CrossRefGoogle ScholarPubMed
Peralta, V., Moreno-Izco, L., Sanchez-Torres, A., et al., Characterization of the deficit syndrome in drug-naive schizophrenia patients: The role of spontaneous movement disorders and neurological soft signs. Schizophr Bull, 2014. 40(1): pp. 214224.CrossRefGoogle Scholar
de Medeiros, H. L. V., Vasconcelos, S. C., Elkis, H., et al., The Brief Negative Symptom Scale: Validation in a multicenter Brazilian study. Compr Psychiatry, 2018. 85: pp. 4247.CrossRefGoogle Scholar
Strauss, G. P., Nuñez, A, Ahmed, A. O, et al., The latent structure of negative symptoms in schizophrenia. JAMA Psychiatry, 2018. 75(12): pp. 12711279.CrossRefGoogle ScholarPubMed
Malaspina, D., Walsh-Messinger, J., Gaebel, W., et al., Negative symptoms, past and present: A historical perspective and moving to DSM-5. Eur Neuropsychopharmacol, 2014. 24(5): pp. 710724.CrossRefGoogle ScholarPubMed
Tandon, R., Gaebel, W., Barch, D. M., et al., Definition and description of schizophrenia in the DSM-5. Schizophr Res, 2013. 150(1): pp. 310.CrossRefGoogle ScholarPubMed
Heckers, S., Barch, D. M., Bustillo, J., et al., Structure of the psychotic disorders classification in DSM-5. Schizophr Res, 2013. 150(1): pp. 1114.CrossRefGoogle ScholarPubMed
Barch, D. M., Bustillo, J., Gaebel, W., et al., Logic and justification for dimensional assessment of symptoms and related clinical phenomena in psychosis: Relevance to DSM-5. Schizophr Res, 2013. 150(1): pp. 1520.CrossRefGoogle ScholarPubMed
Galderisi, S., Bucci, P., Mucci, A., et al., Categorical and dimensional approaches to negative symptoms of schizophrenia: Focus on long-term stability and functional outcome. Schizophr Res, 2013. 147(1): pp. 157162.CrossRefGoogle ScholarPubMed
Kirkpatrick, B., Progress in the study of negative symptoms. Schizophr Bull, 2014. 40 Suppl 2(Suppl 2): pp. S101S106.CrossRefGoogle Scholar
Galderisi, S., Merlotti, E., and Mucci, A., Neurobiological background of negative symptoms. Eur Arch Psychiatry Clin Neurosci, 2015. 265(7): pp. 543558.CrossRefGoogle ScholarPubMed
Mucci, A., Dima, D., Soricelli, A., et al., Is avolition in schizophrenia associated with a deficit of dorsal caudate activity? A functional magnetic resonance imaging study during reward anticipation and feedback. Psychol Med, 2015. 45(8): pp. 17651778.CrossRefGoogle ScholarPubMed
Kirschner, M., Aleman, A., and Kaiser, S., Secondary negative symptoms – A review of mechanisms, assessment and treatment. Schizophr Res, 2017. 186: pp. 2938.CrossRefGoogle ScholarPubMed
Mucci, A., Merlotti, E., Üçok, A, Aleman, A., and Galderisi, S., Primary and persistent negative symptoms: Concepts, assessments and neurobiological bases. Schizophr Res, 2017. 186: pp. 1928.CrossRefGoogle ScholarPubMed
Giordano, G. M., Stanziano, M., Papa, M., et al., Functional connectivity of the ventral tegmental area and avolition in subjects with schizophrenia: A resting state functional MRI study. Eur Neuropsychopharmacol, 2018. 28(5): pp. 589602.CrossRefGoogle ScholarPubMed
Amodio, A., Quarantelli, M., Mucci, A, et al., Avolition-apathy and white matter connectivity in schizophrenia: Reduced fractional anisotropy between amygdala and insular cortex. Clin EEG Neurosci, 2018. 49(1): pp. 5565.CrossRefGoogle ScholarPubMed
Giordano, G. M., Pezzella, P., Quarantelli, M., et al., Investigating the relationship between white matter connectivity and motivational circuits in subjects with deficit schizophrenia: A diffusion tensor imaging (DTI) study. J Clin Med, 2021. 11(1).CrossRefGoogle ScholarPubMed
Giordano, G. M., Brando, F., Perrottelli, A., et al., Tracing links between early auditory information processing and negative symptoms in schizophrenia: An ERP study. Front Psychiatry, 2021. 12: p. 790745.CrossRefGoogle ScholarPubMed
Beck, A. T., Himelstein, R., Bredemeier, K., Silverstein, S. M., and Grant, P., What accounts for poor functioning in people with schizophrenia: A re-evaluation of the contributions of neurocognitive v. attitudinal and motivational factors. Psychol Med, 2018. 48(16): pp. 27762785.CrossRefGoogle ScholarPubMed
Kirkpatrick, B., Buchanan, R. W., Ross, D. E., and Carpenter, W. T., Jr., A separate disease within the syndrome of schizophrenia. Arch Gen Psychiatry, 2001. 58(2): pp. 165171.CrossRefGoogle ScholarPubMed
Kirkpatrick, B. and Galderisi, S., Deficit schizophrenia: An update. World Psychiatry, 2008. 7(3): pp. 143147.CrossRefGoogle ScholarPubMed
Kirkpatrick, B., Mucci, A., and Galderisi, S., Primary, enduring negative symptoms: An update on research. Schizophr Bull, 2017. 43(4): pp. 730736.CrossRefGoogle ScholarPubMed
Carpenter, W. T., Jr., Heinrichs, D. W., and Alphs, L. D., Treatment of negative symptoms. Schizophr Bull, 1985. 11(3): pp. 440452.CrossRefGoogle ScholarPubMed
Möller, H. J., Clinical evaluation of negative symptoms in schizophrenia. Eur Psychiatry, 2007. 22(6): pp. 380386.CrossRefGoogle ScholarPubMed
Kirschner, M., Aleman, A., and Kaiser, S., Secondary negative symptoms – A review of mechanisms, assessment and treatment. Schizophr Res, 2017. 186: pp. 2938.CrossRefGoogle ScholarPubMed
Carpenter, W. T., Jr., Heinrichs, D. W., and Wagman, A. M., Deficit and nondeficit forms of schizophrenia: The concept. Am J Psychiatry, 1988. 145(5): pp. 578583.Google ScholarPubMed
Galderisi, S., Maj, M., Mucci, A., et al., Historical, psychopathological, neurological, and neuropsychological aspects of deficit schizophrenia: A multicenter study. Am J Psychiatry, 2002. 159(6): pp. 983990.CrossRefGoogle ScholarPubMed
Buchanan, R. W., Persistent negative symptoms in schizophrenia: An overview. Schizophr Bull, 2007. 33(4): pp. 10131022.CrossRefGoogle ScholarPubMed
Kirkpatrick, B. and Galderisi, S., Deficit schizophrenia: An update. World Psychiatry, 2008. 7(3): pp. 143147.CrossRefGoogle ScholarPubMed
Galderisi, S. and Maj, M., Deficit schizophrenia: An overview of clinical, biological and treatment aspects. Eur Psychiatry, 2009. 24(8): pp. 493500.CrossRefGoogle ScholarPubMed
Kirkpatrick, B., Miller, B., García-Rizo, C., and Fernandez-Egea, E., Schizophrenia: A systemic disorder. Clin Schizophr Relat Psychoses, 2014. 8(2): pp. 7379.CrossRefGoogle ScholarPubMed
Bucci, P. and Galderisi, S., Categorizing and assessing negative symptoms. Curr Opin Psychiatry, 2017. 30(3): pp. 201208.CrossRefGoogle ScholarPubMed
Kirkpatrick, B., Mucci, A., and Galderisi, S., Primary, enduring negative symptoms: An update on research. Schizophr Bull, 2017. 43(4): pp. 730736.CrossRefGoogle ScholarPubMed
Kay, S. R., Fiszbein, A., and Opler, L. A., The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull, 1987. 13(2): pp. 261276.CrossRefGoogle ScholarPubMed
Andreasen, N. C., The Scale for the Assessment of Negative Symptoms (SANS): Conceptual and theoretical foundations. Br J Psychiatry Suppl, 1989(7): pp. 4958.CrossRefGoogle Scholar
Overall, J. E. and Gorham, D. R., The Brief Psychiatric Rating Scale. Psychol Rep, 1962. 10(3): pp. 799812.CrossRefGoogle Scholar
Kirkpatrick, B., Strauss, G. P., Nguyen, L., et al., The brief negative symptom scale: Psychometric properties. Schizophr Bull, 2011. 37(2): pp. 300305.CrossRefGoogle ScholarPubMed
Mucci, A., Galderisi, S., Merlotti, E., et al., The Brief Negative Symptom Scale (BNSS): Independent validation in a large sample of Italian patients with schizophrenia. Eur Psychiatry, 2015. 30(5): pp. 641647.CrossRefGoogle Scholar
Kring, A. M., Gur, R. E., Blanchard, J. J., Horan, W. P., and Reise, S. P., The Clinical Assessment Interview for Negative Symptoms (CAINS): Final development and validation. Am J Psychiatry, 2013. 170(2): pp. 165172.CrossRefGoogle ScholarPubMed
Daniel, D. G., Issues in selection of instruments to measure negative symptoms. Schizophr Res, 2013. 150(2–3): pp. 343345.CrossRefGoogle ScholarPubMed
Garcia-Portilla, M. P., Garcia-Alvarez, L., Saiz, P. A., et al., Psychometric evaluation of the negative syndrome of schizophrenia. Eur Arch Psychiatry Clin Neurosci, 2015. 265(7): pp. 559566.CrossRefGoogle ScholarPubMed
Dollfus, S., Mach, C., and Morello, R., Self-evaluation of negative symptoms: A novel tool to assess negative symptoms. Schizophr Bull, 2016. 42(3): pp. 571578.CrossRefGoogle ScholarPubMed
Cella, M., Preti, A., Edwards, C., Dow, T., and Wykes, T., Cognitive remediation for negative symptoms of schizophrenia: A network meta-analysis. Clin Psychol Rev, 2017. 52: pp. 4351.CrossRefGoogle ScholarPubMed
Cella, M., Stahl, D., Morris, S., et al., Effects of cognitive remediation on negative symptoms dimensions: Exploring the role of working memory. Psychol Med, 2017: pp. 19.CrossRefGoogle Scholar
Lutgens, D., Gariepy, G., and Malla, A., Psychological and psychosocial interventions for negative symptoms in psychosis: Systematic review and meta-analysis. Br J Psychiatry, 2017. 210(5): pp. 324332.CrossRefGoogle ScholarPubMed
Turner, D. T., McGlanaghy, E., Cuijpers, P., et al., A meta-analysis of social skills training and related interventions for psychosis. Schizophr Bull, 2018. 44(3): pp. 475491.CrossRefGoogle ScholarPubMed
Heinrichs, R. W. and Zakzanis, K. K., Neurocognitive deficit in schizophrenia: A quantitative review of the evidence. Neuropsychology, 1998. 12(3): pp. 426445.CrossRefGoogle ScholarPubMed
Keefe, R. S., Should cognitive impairment be included in the diagnostic criteria for schizophrenia? World Psychiatry, 2008. 7(1): pp. 2228.CrossRefGoogle ScholarPubMed
Galderisi, S., Davidson, M., Kahn, R. S., et al., Correlates of cognitive impairment in first episode schizophrenia: The EUFEST study. Schizophr Res, 2009. 115(2–3): pp. 104–14.CrossRefGoogle ScholarPubMed
Reichenberg, A., The assessment of neuropsychological functioning in schizophrenia. Dialogues Clin Neurosci, 2010. 12(3): pp. 383392.CrossRefGoogle ScholarPubMed
Bora, E., Lin, A., Wood, S. J., et al., Cognitive deficits in youth with familial and clinical high risk to psychosis: A systematic review and meta-analysis. Acta Psychiatr Scand, 2014. 130(1): pp. 115.CrossRefGoogle ScholarPubMed
Fatouros-Bergman, H., Cervenka, S., Flyckt, L., Edman, G., and Farde, L., Meta-analysis of cognitive performance in drug-naïve patients with schizophrenia. Schizophr Res, 2014. 158(1–3): pp. 156162.CrossRefGoogle ScholarPubMed
Lee, T. Y., Hong, S. B., Shin, N. Y., and Kwon, J. S., Social cognitive functioning in prodromal psychosis: A meta-analysis. Schizophr Res, 2015. 164(1–3): pp. 2834.CrossRefGoogle ScholarPubMed
Sitskoorn, M. M., Aleman, A., Ebisch, S. J., Appels, M. C., and Kahn, R. S., Cognitive deficits in relatives of patients with schizophrenia: A meta-analysis. Schizophr Res, 2004. 71(2–3): pp. 285295.CrossRefGoogle ScholarPubMed
Mucci, A., Galderisi, S., Green, M. F., et al., Familial aggregation of MATRICS Consensus Cognitive Battery scores in a large sample of outpatients with schizophrenia and their unaffected relatives. Psychol Med, 2018. 48(8): pp. 13591366.CrossRefGoogle Scholar
Nuechterlein, K. H., Dawson, M. E., Gitlin, M., et al., Developmental processes in schizophrenic disorders: Longitudinal studies of vulnerability and stress. Schizophr Bull, 1992. 18(3): pp. 387425.CrossRefGoogle ScholarPubMed
Mohamed, S., Rosenheck, R., Swartz, M., et al., Relationship of cognition and psychopathology to functional impairment in schizophrenia. Am J Psychiatry, 2008. 165(8): pp. 978987.CrossRefGoogle ScholarPubMed
Green, M. F., Nuechterlein, K. H., Gold, J. M., et al., Approaching a consensus cognitive battery for clinical trials in schizophrenia: The NIMH-MATRICS conference to select cognitive domains and test criteria. Biol Psychiatry, 2004. 56(5): pp. 301307.CrossRefGoogle ScholarPubMed
Nuechterlein, K. H., Green, M. F., Kern, R. S., et al., The MATRICS Consensus Cognitive Battery, part 1: Test selection, reliability, and validity. Am J Psychiatry, 2008. 165(2): pp. 203213.CrossRefGoogle ScholarPubMed
Grimes, K. M., Zanjani, A., and Zakzanis, K. K., Memory impairment and the mediating role of task difficulty in patients with schizophrenia. Psychiatry Clin Neurosci, 2017. 71(9): pp. 600611.CrossRefGoogle ScholarPubMed
Green, M. F., Horan, W. P., and Lee, J., Nonsocial and social cognition in schizophrenia: Current evidence and future directions. World Psychiatry, 2019. 18(2): pp. 146161.CrossRefGoogle ScholarPubMed
Zhang, H., Wang, Y., Hu, Y., et al., Meta-analysis of cognitive function in Chinese first-episode schizophrenia: MATRICS Consensus Cognitive Battery (MCCB) profile of impairment. Gen Psychiatr, 2019. 32(3): p. e100043.CrossRefGoogle ScholarPubMed
Green, M. F., Penn, D. L., Bentall, R., et al., Social cognition in schizophrenia: An NIMH workshop on definitions, assessment, and research opportunities. Schizophr Bull, 2008. 34(6): pp. 12111220.CrossRefGoogle ScholarPubMed
Pinkham, A. E., Penn, D. L., Green, M. F., et al., The social cognition psychometric evaluation study: Results of the expert survey and RAND panel. Schizophr Bull, 2014. 40(4): pp. 813823.CrossRefGoogle ScholarPubMed
Ventura, J., Subotnik, K. L., Gitlin, M. J., et al., Negative symptoms and functioning during the first year after a recent onset of schizophrenia and 8 years later. Schizophr Res, 2015. 161(2–3): pp. 407413.CrossRefGoogle ScholarPubMed
Green, M. F., Impact of cognitive and social cognitive impairment on functional outcomes in patients with schizophrenia. J Clin Psychiatry, 2016. 77 Suppl 2: pp. 811.CrossRefGoogle ScholarPubMed
Javed, A. and Charles, A., The importance of social cognition in improving functional outcomes in schizophrenia. Front Psychiatry, 2018. 9: p. 157.CrossRefGoogle ScholarPubMed
Ventura, J., Subotnik, K. L., Gretchen-Doorly, D., et al., Cognitive remediation can improve negative symptoms and social functioning in first-episode schizophrenia: A randomized controlled trial. Schizophr Res, 2019. 203: pp. 2431.CrossRefGoogle ScholarPubMed
Bowie, C. R., Reichenberg, A., Patterson, T. L., Heaton, R. K., and Harvey, P. D., Determinants of real-world functional performance in schizophrenia subjects: Correlations with cognition, functional capacity, and symptoms. Am J Psychiatry, 2006. 163(3): pp. 418425.CrossRefGoogle ScholarPubMed
Giordano, G. M., Giuliani, L., Perrottelli, A., et al., Mismatch negativity and P3a impairment through different phases of schizophrenia and their association with real-life functioning. J Clin Med, 2021. 10(24): p. 5838.CrossRefGoogle ScholarPubMed
Giordano, G. M., Perrottelli, A., Mucci, A., et al., Investigating the relationships of P3b with negative symptoms and neurocognition in subjects with chronic schizophrenia. Brain Sci, 2021. 11(12): p. 1632.CrossRefGoogle ScholarPubMed
Dickinson, D., Goldberg, T. E., Gold, J. M., Elvevåg, B., and Weinberger, D. R., Cognitive factor structure and invariance in people with schizophrenia, their unaffected siblings, and controls. Schizophr Bull, 2011. 37(6): pp. 11571167.CrossRefGoogle ScholarPubMed
Mehta, U. M., Thirthalli, J., Subbakrishna, D. K., et al., Social and neuro-cognition as distinct cognitive factors in schizophrenia: A systematic review. Schizophr Res, 2013. 148(1–3): pp. 311.CrossRefGoogle ScholarPubMed
McCleery, A., Green, M. F., Hellemann, G. S., et al., Latent structure of cognition in schizophrenia: A confirmatory factor analysis of the MATRICS Consensus Cognitive Battery (MCCB). Psychol Med, 2015. 45(12): pp. 26572666.CrossRefGoogle ScholarPubMed
Keefe, R. S., Poe, M., Walker, T. M., and Harvey, P. D., The relationship of the Brief Assessment of Cognition in Schizophrenia (BACS) to functional capacity and real-world functional outcome. J Clin Exp Neuropsychol, 2006. 28(2): pp. 260269.CrossRefGoogle ScholarPubMed
Burton, C. Z., Vella, L., Harvey, P. D., et al., Factor structure of the MATRICS Consensus Cognitive Battery (MCCB) in schizophrenia. Schizophr Res, 2013. 146(1–3): pp. 244248.CrossRefGoogle ScholarPubMed
Corbera, S., Wexler, B. E., Ikezawa, S., and Bell, M. D., Factor structure of social cognition in schizophrenia: Is empathy preserved? Schizophr Res Treatment, 2013. 2013: p. 409205.CrossRefGoogle ScholarPubMed
Browne, J., Penn, D. L., Raykov, T., et al., Social cognition in schizophrenia: Factor structure of emotion processing and theory of mind. Psychiatry Res, 2016. 242: pp. 150156.CrossRefGoogle ScholarPubMed
Buck, B. E., Healey, K. M., Gagen, E. C., Roberts, D. L., and Penn, D. L., Social cognition in schizophrenia: Factor structure, clinical and functional correlates. J Ment Health, 2016. 25(4): pp. 330337.CrossRefGoogle ScholarPubMed
Mike, L., Guimond, S, Kelly, S., et al., Social cognition in early course of schizophrenia: Exploratory factor analysis. Psychiatry Res, 2019. 272: pp. 737743.CrossRefGoogle ScholarPubMed
Green, M. F., What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry, 1996. 153(3): pp. 321330.Google ScholarPubMed
Green, M. F., Kern, R. S., Braff, D. L., and Mintz, J., Neurocognitive deficits and functional outcome in schizophrenia: Are we measuring the “right stuff”? Schizophr Bull, 2000. 26(1): pp. 119136.CrossRefGoogle ScholarPubMed
Green, M. F., Llerena, K., and Kern, R. S., The “right stuff” revisited: What have we learned about the determinants of daily functioning in schizophrenia? Schizophr Bull, 2015. 41(4): pp. 781785.CrossRefGoogle Scholar
Bakkour, N., Samp, J., Akhras, K., et al., Systematic review of appropriate cognitive assessment instruments used in clinical trials of schizophrenia, major depressive disorder and bipolar disorder. Psychiatry Res, 2014. 216(3): pp. 291302.CrossRefGoogle ScholarPubMed
Bryson, G., Bell, M., and Lysaker, P., Affect recognition in schizophrenia: A function of global impairment or a specific cognitive deficit. Psychiatry Res, 1997. 71(2): pp. 105113.CrossRefGoogle ScholarPubMed
Kerr, S. L. and Neale, J. M., Emotion perception in schizophrenia: Specific deficit or further evidence of generalized poor performance? J Abnorm Psychol, 1993. 102(2): pp. 312318.CrossRefGoogle ScholarPubMed
Corcoran, R. and Frith, C. D., Autobiographical memory and theory of mind: evidence of a relationship in schizophrenia. Psychol Med, 2003. 33(5): pp. 897905.CrossRefGoogle ScholarPubMed
McDonald, S., Bornhofen, C., Shum, D., et al., Reliability and validity of The Awareness of Social Inference Test (TASIT): A clinical test of social perception. Disabil Rehabil, 2006. 28(24): pp. 15291542.CrossRefGoogle ScholarPubMed
Durand, D., Strassnig, M., Sabbag, S., et al., Factors influencing self-assessment of cognition and functioning in schizophrenia: Implications for treatment studies. Eur Neuropsychopharmacol, 2015. 25(2): pp. 185191.CrossRefGoogle ScholarPubMed
Buchanan, R. W., Keefe, R. S., Umbricht, D., et al., The FDA-NIMH-MATRICS guidelines for clinical trial design of cognitive-enhancing drugs: What do we know 5 years later? Schizophr Bull, 2011. 37(6): pp. 12091217.CrossRefGoogle ScholarPubMed
Bowie, C. R., Cognitive remediation for severe mental illness: state of the field and future directions. World Psychiatry, 2019. 18(3): pp. 274275.CrossRefGoogle ScholarPubMed
Green, M. F., Schooler, N. R., Kern, R. S., et al., Evaluation of functionally meaningful measures for clinical trials of cognition enhancement in schizophrenia. Am J Psychiatry, 2011. 168(4): pp. 400407.CrossRefGoogle ScholarPubMed
Keefe, R. S., Davis, V. G., Spagnola, N. B., et al., Reliability, validity and treatment sensitivity of the Schizophrenia Cognition Rating Scale. Eur Neuropsychopharmacol, 2015. 25(2): pp. 176184.CrossRefGoogle ScholarPubMed
Davidson, M., Cognitive impairment as a diagnostic criterion and treatment target in schizophrenia. World Psychiatry, 2019. 18(2): pp. 171172.CrossRefGoogle ScholarPubMed
Falkai, P. and Schmitt, A., The need to develop personalized interventions to improve cognition in schizophrenia. World Psychiatry, 2019. 18(2): p. 170.CrossRefGoogle ScholarPubMed
Keefe, R. S. E., Why are there no approved treatments for cognitive impairment in schizophrenia? World Psychiatry, 2019. 18(2): pp. 167168.CrossRefGoogle ScholarPubMed
Melle, I., Cognition in schizophrenia: A marker of underlying neurodevelopmental problems? World Psychiatry, 2019. 18(2): pp. 164165.CrossRefGoogle ScholarPubMed
Sahakian, B. J. and Savulich, G., Innovative methods for improving cognition, motivation and wellbeing in schizophrenia. World Psychiatry, 2019. 18(2): pp. 168170.CrossRefGoogle ScholarPubMed
Keefe, R. S., Poe, M., Walker, T. M., Kang, J. W., and Harvey, P. D., The Schizophrenia Cognition Rating Scale: An interview-based assessment and its relationship to cognition, real-world functioning, and functional capacity. Am J Psychiatry, 2006. 163(3): pp. 426432.CrossRefGoogle ScholarPubMed
Ventura, J., Cienfuegos, A., Boxer, O., and Bilder, R., Clinical global impression of cognition in schizophrenia (CGI-CogS): Reliability and validity of a co-primary measure of cognition. Schizophr Res, 2008. 106(1): pp. 5969.CrossRefGoogle ScholarPubMed
Ventura, J., Reise, S. P., Keefe, R. S., et al., The Cognitive Assessment Interview (CAI): Development and validation of an empirically derived, brief interview-based measure of cognition. Schizophr Res, 2010. 121(1–3): pp. 2431.CrossRefGoogle ScholarPubMed
Reise, S. P., Ventura, J., Keefe, R. S., et al., Bifactor and item response theory analyses of interviewer report scales of cognitive impairment in schizophrenia. Psychol Assess, 2011. 23(1): pp. 245261.CrossRefGoogle ScholarPubMed
Palumbo, D., Bucci, P., Mucci, A., et al., Inter-rater reliability and psychometric characteristics of the Italian version of the Cognitive Assessment Interview (CAI). J Psychopathol, 2019. 25(2): pp. 85114.Google Scholar
Ventura, J., Reise, S. P., Keefe, R. S. E., et al., The Cognitive Assessment Interview (CAI): Reliability and validity of a brief interview-based measure of cognition. Schizophr Bull, 2012. 39(3): pp. 583591.CrossRefGoogle ScholarPubMed
Nielsen, R. E. and Nielsen, J., Antipsychotic drug treatment for patients with schizophrenia: Theoretical background, clinical considerations and patient preferences. Clin Med, 2009. 1: CMT.S2175.Google Scholar
Hill, S. K., Bishop, J. R., Palumbo, D., and Sweeney, J. A., Effect of second-generation antipsychotics on cognition: Current issues and future challenges. Expert Rev Neurother, 2010. 10(1): pp. 4357.CrossRefGoogle ScholarPubMed
Nielsen, R. E., Levander, S., Kjaersdam Telléus, G., et al., Second-generation antipsychotic effect on cognition in patients with schizophrenia: A meta-analysis of randomized clinical trials. Acta Psychiatr Scand, 2015. 131(3): pp. 185196.CrossRefGoogle ScholarPubMed
Chen, A. T. and Nasrallah, H. A., Neuroprotective effects of the second generation antipsychotics. Schizophr Res, 2019. 208: pp. 17.CrossRefGoogle ScholarPubMed
Michael Davidson, M. D., Silvana Galderisi, M. D., Mark Weiser, M. D. et al., Cognitive effects of antipsychotic drugs in first-episode schizophrenia and schizophreniform disorder: A randomized, open-label clinical trial (EUFEST). Am J Psychiatry, 2009. 166(6): pp. 675682.CrossRefGoogle Scholar
Vita, A., Mussoni, C., Deste, G, et al., Psychopharmacological treatment of cognitive deficits in schizophrenia and mood disorders. Official Journal of the Italian Society of Psychopathology, 2018. 24: pp. 6272.Google Scholar
Altamura, A., Fagiolini, A., Galderisi, S., Rocca, P., and Rossi, A., Integrated treatment of schizophrenia. J Psychopathol, 2015. 21: pp. 168193.Google Scholar
Nibbio, G., Barlati, S., Cacciani, P, et al., Evidence-based integrated intervention in patients with schizophrenia: A pilot study of feasibility and effectiveness in a real-world rehabilitation setting. Int J Environ Res Public Health, 2020. 17(10) : p. 3352.CrossRefGoogle Scholar
Halverson, T. F., Orleans-Pobee, M., Merritt, C., et al., Pathways to functional outcomes in schizophrenia spectrum disorders: Meta-analysis of social cognitive and neurocognitive predictors. Neurosci Biobehav Rev, 2019. 105: pp. 212219.CrossRefGoogle ScholarPubMed
McGurk, S. R., Twamley, E. W., Sitzer, D. I., McHugo, G. J., and Mueser, K. T., A meta-analysis of cognitive remediation in schizophrenia. Am J Psychiatry, 2007. 164(12): pp. 17911802.CrossRefGoogle ScholarPubMed
Wykes, T., Huddy, V., Cellard, C., McGurk, S. R., and Czobor, P., A meta-analysis of cognitive remediation for schizophrenia: Methodology and effect sizes. Am J Psychiatry, 2011. 168(5): pp. 472485.CrossRefGoogle ScholarPubMed
Pekkala, E. and Merinder, L., Psychoeducation for schizophrenia. Cochrane Database Syst Rev, 2002(2): p. Cd002831.Google Scholar
Xia, J., Merinder, L. B., and Belgamwar, M. R., Psychoeducation for schizophrenia. Cochrane Database Syst Rev, 2011. 2011(6): p. Cd002831.Google ScholarPubMed
Jauhar, S., McKenna, P. J., Radua, J., et al., Cognitive-behavioural therapy for the symptoms of schizophrenia: Systematic review and meta-analysis with examination of potential bias. Br J Psychiatry, 2014. 204(1): pp. 2029.CrossRefGoogle ScholarPubMed
Laws, K. R., Darlington, N., Kondel, T. K., McKenna, P. J., and Jauhar, S., Cognitive behavioural therapy for schizophrenia – outcomes for functioning, distress and quality of life: A meta-analysis. BMC Psychol, 2018. 6(1): p. 32.CrossRefGoogle ScholarPubMed
Silverstein, S. M., Spaulding, W. D., Menditto, A. A., et al., Attention shaping: A reward-based learning method to enhance skills training outcomes in schizophrenia. Schizophr Bull, 2009. 35(1): pp. 222232.CrossRefGoogle ScholarPubMed
Galderisi, S., Piegari, G., Mucci, A, et al., Social skills and neurocognitive individualized training in schizophrenia: Comparison with structured leisure activities. Eur Arch Psychiatry Clin Neurosci, 2010. 260(4): pp. 305315.CrossRefGoogle ScholarPubMed
Bucci, P., Piegari, G., Mucci, A., et al., Neurocognitive individualized training versus social skills individualized training: A randomized trial in patients with schizophrenia. Schizophr Res, 2013. 150(1): pp. 6975.CrossRefGoogle ScholarPubMed
Firth, J., Stubbs, B., Rosenbaum, S., et al., Aerobic exercise improves cognitive functioning in people with schizophrenia: A systematic review and meta-analysis. Schizophr Bull, 2017. 43(3): pp. 546556.Google ScholarPubMed
Stubbs, B., Vancampfort, D., Hallgren, M., et al., EPA guidance on physical activity as a treatment for severe mental illness: A meta-review of the evidence and Position Statement from the European Psychiatric Association (EPA), supported by the International Organization of Physical Therapists in Mental Health (IOPTMH). Eur Psychiatry, 2018. 54: pp. 124144.CrossRefGoogle ScholarPubMed
Correll, C. U., Galling, B., Pawar, A, et al., Comparison of early intervention services vs treatment as usual for early-phase psychosis: A systematic review, meta-analysis, and meta-regression. JAMA Psychiatry, 2018. 75(6): pp. 555565.CrossRefGoogle ScholarPubMed
Brisch, R., Saniotis, A., Wolf, R., et al., The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: Old fashioned, but still in vogue. Front Psychiatry, 2014. 5: p. 47.Google ScholarPubMed
da Silva Alves, F., Figee, M., van Amelsvoort, T., Veltman, D., and de Haan, L., The revised dopamine hypothesis of schizophrenia: Evidence from pharmacological MRI studies with atypical antipsychotic medication. Psychopharmacol Bull, 2008. 41(1): pp. 121132.Google ScholarPubMed
Howes, O. D. and Kapur, S., The dopamine hypothesis of schizophrenia: Version III–the final common pathway. Schizophr Bull, 2009. 35(3): pp. 549562.CrossRefGoogle ScholarPubMed
Walter, H., Kammerer, H., Frasch, K., Spitzer, M., and Abler, B., Altered reward functions in patients on atypical antipsychotic medication in line with the revised dopamine hypothesis of schizophrenia. Psychopharmacology (Berl), 2009. 206(1): pp. 121132.CrossRefGoogle ScholarPubMed
Kesby, J. P., Eyles, D. W., McGrath, J. J., and Scott, J. G., Dopamine, psychosis and schizophrenia: The widening gap between basic and clinical neuroscience. Translational Psychiatry, 2018. 8(1): p. 30.CrossRefGoogle ScholarPubMed
Voce, A., Calabria, B., Burns, R., Castle, D., and McKetin, R., A systematic review of the symptom profile and course of methamphetamine-associated psychosis (substance use and misuse). Subst Use Misuse, 2019. 54(4): pp. 549559.CrossRefGoogle ScholarPubMed
McCutcheon, R. A., Krystal, J. H., and Howes, O. D., Dopamine and glutamate in schizophrenia: Biology, symptoms and treatment. World Psychiatry, 2020. 19(1): pp. 1533.CrossRefGoogle Scholar
Javitt, D. C. and Zukin, S. R., Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry, 1991. 148(10): pp. 13011308.Google ScholarPubMed
Moghaddam, B. and Javitt, D., From revolution to evolution: The glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology, 2012. 37(1): pp. 415.CrossRefGoogle ScholarPubMed
Carhart-Harris, R. L., Brugger, S., Nutt, D. J., and Stone, J. M., Psychiatry’s next top model: Cause for a re-think on drug models of psychosis and other psychiatric disorders. J Psychopharmacol, 2013. 27(9): pp. 771778.CrossRefGoogle ScholarPubMed
Goff, D. C. and Coyle, J. T., The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry, 2001. 158(9): pp. 13671377.CrossRefGoogle ScholarPubMed
Salamone, J. D., Yohn, S. E., López-Cruz, L., San Miguel, N., and Correa, M., Activational and effort-related aspects of motivation: Neural mechanisms and implications for psychopathology. Brain, 2016. 139(Pt 5): pp. 13251347.CrossRefGoogle ScholarPubMed
Bromberg-Martin, E. S., Matsumoto, M., and Hikosaka, O., Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 2010. 68(5): pp. 815834.CrossRefGoogle ScholarPubMed
Miller, E. M., Shankar, M. U., Knutson, B., and McClure, S. M., Dissociating motivation from reward in human striatal activity. J Cogn Neurosci, 2014. 26(5): pp. 10751084.CrossRefGoogle ScholarPubMed
Bissonette, G. B. and Roesch, M. R., Development and function of the midbrain dopamine system: What we know and what we need to. Genes Brain Behav, 2016. 15(1): pp. 6273.CrossRefGoogle ScholarPubMed
Bissonette, G. B. and Roesch, M. R., Neurophysiology of reward-guided behavior: Correlates related to predictions, value, motivation, errors, attention, and action. Curr Top Behav Neurosci, 2016. 27: pp. 199230.CrossRefGoogle ScholarPubMed
O’Doherty, J. P., Multiple systems for the motivational control of behavior and associated neural substrates in humans. Curr Top Behav Neurosci, 2016. 27: pp. 291312.CrossRefGoogle ScholarPubMed
Cohen, A. S., Schwartz, E., Le, T. P., et al., Using biobehavioral technologies to effectively advance research on negative symptoms. World Psychiatry, 2019. 18(1): pp. 103104.CrossRefGoogle ScholarPubMed
Levy, R. and Dubois, B., Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cereb Cortex, 2006. 16(7): pp. 916928.CrossRefGoogle ScholarPubMed
Faerden, A., Vaskinn, A, Finset, A., et al., Apathy is associated with executive functioning in first episode psychosis. BMC Psychiatry, 2009. 9: p. 1.CrossRefGoogle ScholarPubMed
Ward, R. D., Methods for dissecting motivation and related psychological processes in rodents. Curr Top Behav Neurosci, 2016. 27: pp. 451470.CrossRefGoogle ScholarPubMed
Simpson, E. H., Winiger, V., Biezonski, D. K., et al., Selective overexpression of dopamine D3 receptors in the striatum disrupts motivation but not cognition. Biol Psychiatry, 2014. 76(10): pp. 823831.CrossRefGoogle Scholar
Leggio, G. M., Bucolo, C., Platania, C. B. M, Salomone, S., and Drago, F., Current drug treatments targeting dopamine D3 receptor. Pharmacol Ther, 2016. 165: pp. 164177.CrossRefGoogle ScholarPubMed
Maramai, S., Gemma, S, Brogi, S., et al., Dopamine D3 receptor antagonists as potential therapeutics for the treatment of neurological diseases. Front Neurosci, 2016. 10: p. 451.CrossRefGoogle ScholarPubMed
Sokoloff, P. and Le Foll, B., The dopamine D3 receptor, a quarter century later. Eur J Neurosci, 2017. 45(1): pp. 219.CrossRefGoogle ScholarPubMed
Torrisi, S. A., Salomone, S., Geraci, F, et al., Buspirone counteracts MK-801-induced schizophrenia-like phenotypes through dopamine D(3) receptor blockade. Front Pharmacol, 2017. 8: p. 710.CrossRefGoogle ScholarPubMed
Fleischhacker, W., Galderisi, S., Laszlovszky, I., et al., The efficacy of cariprazine in negative symptoms of schizophrenia: Post hoc analyses of PANSS individual items and PANSS-derived factors. Eur Psychiatry, 2019. 58: pp. 19.CrossRefGoogle ScholarPubMed
Németh, G., Laszlovszky, I., Czobor, P., et al., Cariprazine versus risperidone monotherapy for treatment of predominant negative symptoms in patients with schizophrenia: A randomised, double-blind, controlled trial. Lancet, 2017. 389(10074): pp. 11031113.CrossRefGoogle ScholarPubMed
Neill, J. C., Harte, M. K., Haddad, P. M., Lydall, E. S., and Dwyer, D. M., Acute and chronic effects of NMDA receptor antagonists in rodents, relevance to negative symptoms of schizophrenia: A translational link to humans. Eur Neuropsychopharmacol, 2014. 24(5): pp. 822835.CrossRefGoogle ScholarPubMed
Collo, G., Mucci, A., Giordano, G. M., Merlo Pich, E., and Galderisi, S., Negative symptoms of schizophrenia and dopaminergic transmission: Translational models and perspectives opened by iPSC techniques. Front Neurosci, 2020. 14: p. 632.CrossRefGoogle ScholarPubMed
D’Souza, D. C., Perry, E., MacDougall, L., et al., The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: Implications for psychosis. Neuropsychopharmacology, 2004. 29(8): pp. 15581572.CrossRefGoogle ScholarPubMed
Avior, Y., Sagi, I., and Benvenisty, N., Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol, 2016. 17(3): pp. 170182.CrossRefGoogle ScholarPubMed
Cavalleri, L., Merlo Pich, E., Millan, M. J., et al., Ketamine enhances structural plasticity in mouse mesencephalic and human iPSC-derived dopaminergic neurons via AMPAR-driven BDNF and mTOR signaling. Mol Psychiatry, 2018. 23(4): pp. 812823.CrossRefGoogle ScholarPubMed
Pomarol-Clotet, E., Honey, G. D., Murray, G. K., et al., Psychological effects of ketamine in healthy volunteers. Phenomenological study. Br J Psychiatry, 2006. 189: pp. 173179.CrossRefGoogle ScholarPubMed
Krystal, J. H., Karper, L. P., Seibyl, J. P., et al., Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry, 1994. 51(3): pp. 199214.CrossRefGoogle ScholarPubMed
Thiebes, S., Steinmann, S, Curic, S., et al., Alterations in interhemispheric gamma-band connectivity are related to the emergence of auditory verbal hallucinations in healthy subjects during NMDA-receptor blockade. Neuropsychopharmacology, 2018. 43(7): pp. 16081615.CrossRefGoogle Scholar
Bell, M. D., Corbera, S., Johannesen, J. K., Fiszdon, J. M., and Wexler, B. E., Social cognitive impairments and negative symptoms in schizophrenia: are there subtypes with distinct functional correlates? Schizophr Bull, 2013. 39(1): pp. 186196.CrossRefGoogle ScholarPubMed
Katz, J. L., Su, T. P., Hiranita, T, et al., A role for sigma receptors in stimulant self administration and addiction. Pharmaceuticals (Basel), 2011. 4(6): pp. 880914.CrossRefGoogle ScholarPubMed
Lever, J. R., Miller, D. K., Green, C. L., et al., A selective sigma-2 receptor ligand antagonizes cocaine-induced hyperlocomotion in mice. Synapse, 2014. 68(2): pp. 7384.CrossRefGoogle ScholarPubMed
Skuza, G., Pharmacology of sigma (σ) receptor ligands from a behavioral perspective. Curr Pharm Des, 2012. 18(7): pp. 863874.CrossRefGoogle ScholarPubMed
Keefe, R. S. E., Harvey, P. D., Khan, A., et al., Cognitive effects of MIN-101 in patients with schizophrenia and negative symptoms: Results from a randomized controlled trial. J Clin Psychiatry, 2018. 79(3): 17m11753.CrossRefGoogle ScholarPubMed
Davidson, M., Saoud, J., Staner, C., et al., Efficacy and safety of MIN-101: A 12-week randomized, double-blind, placebo-controlled trial of a new drug in development for the treatment of negative symptoms in schizophrenia. Am J Psychiatry, 2017. 174(12): pp. 11951202.CrossRefGoogle ScholarPubMed
Harvey, P. D., Saoud, J. B., Luthringer, R., et al., Effects of Roluperidone (MIN-101) on two dimensions of the negative symptoms factor score: Reduced emotional experience and reduced emotional expression. Schizophr Res, 2020. 215: pp. 352356.CrossRefGoogle ScholarPubMed
Dedic, N., Jones, P. G., Hopkins, S. C., Lew, R., et al., SEP-363856, a novel psychotropic agent with a unique, non-D(2) receptor mechanism of action. J Pharmacol Exp Ther, 2019. 371(1): pp. 114.CrossRefGoogle ScholarPubMed
Rutigliano, G., Accorroni, A., and Zucchi, R., The case for TAAR1 as a modulator of central nervous system function. Front Pharmacol, 2017. 8: p. 987.CrossRefGoogle ScholarPubMed
Raab, S., Wang, H., Uhles, S., et al., Incretin-like effects of small molecule trace amine-associated receptor 1 agonists. Mol Metab, 2016. 5(1): pp. 4756.CrossRefGoogle ScholarPubMed
Kokkinou, M., Irvine, E. E., Bonsall, D. R., et al., Reproducing the dopamine pathophysiology of schizophrenia and approaches to ameliorate it: A translational imaging study with ketamine. Mol Psychiatry, 2021. 26(6): pp. 25622576.CrossRefGoogle ScholarPubMed
Peres, F. F., Lima, A. C., Hallak, J. E. C., et al., Cannabidiol as a promising strategy to treat and prevent movement disorders? Front Pharmacol, 2018. 9: p. 482.CrossRefGoogle ScholarPubMed
Davies, C. and Bhattacharyya, S., Cannabidiol as a potential treatment for psychosis. Ther Adv Psychopharmacol, 2019. 9: p. 2045125319881916.CrossRefGoogle ScholarPubMed
Zavitsanou, K., Garrick, T., and Huang, X. F., Selective antagonist [3 H]SR141716A binding to cannabinoid CB1 receptors is increased in the anterior cingulate cortex in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry, 2004. 28(2): pp. 355360.CrossRefGoogle ScholarPubMed
Newell, K. A., Deng, C., and Huang, X. F., Increased cannabinoid receptor density in the posterior cingulate cortex in schizophrenia. Exp Brain Res, 2006. 172(4): pp. 556560.CrossRefGoogle ScholarPubMed
Eggan, S. M. and Lewis, D. A., Immunocytochemical distribution of the cannabinoid CB1 receptor in the primate neocortex: a regional and laminar analysis. Cereb Cortex, 2007. 17(1): pp. 175191.CrossRefGoogle ScholarPubMed
Wong, D. F., Kuwabara, H., Horti, A. G., et al., Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11 C]OMAR. Neuroimage, 2010. 52(4): pp. 15051513.CrossRefGoogle ScholarPubMed
Hallak, J. E., Machado-de-Sousa, J. P., Crippa, J. A., et al., Performance of schizophrenic patients in the Stroop Color Word Test and electrodermal responsiveness after acute administration of cannabidiol (CBD). Braz J Psychiatry, 2010. 32(1): pp. 5661.CrossRefGoogle ScholarPubMed
Osborne, A. L., Solowij, N., and Weston-Green, K., A systematic review of the effect of cannabidiol on cognitive function: Relevance to schizophrenia. Neurosci Biobehav Rev, 2017. 72: pp. 310324.CrossRefGoogle ScholarPubMed
Boggs, D. L., Surti, T., Gupta, A., et al., The effects of cannabidiol (CBD) on cognition and symptoms in outpatients with chronic schizophrenia a randomized placebo controlled trial. Psychopharmacology (Berl), 2018. 235(7): pp. 19231932.CrossRefGoogle ScholarPubMed
Rosenbrock, H., Desch, M., Kleiner, O., et al., Evaluation of pharmacokinetics and pharmacodynamics of BI 425809, a novel GlyT1 inhibitor: Translational studies. Clin Transl Sci, 2018. 11(6): pp. 616623.CrossRefGoogle ScholarPubMed
Fleischhacker, W. W., Podhorna, J., Gröschl, M., et al., Efficacy and safety of the novel glycine transporter inhibitor BI 425809 once daily in patients with schizophrenia: A double-blind, randomised, placebo-controlled phase 2 study. Lancet Psychiatry, 2021. 8(3): pp. 191201.CrossRefGoogle ScholarPubMed
Hasan, A., Falkai, P., Lehmann, I., and Gaebel, W., Schizophrenia. Dtsch Arztebl Int, 2020. 117(24): pp. 412419.Google ScholarPubMed
McFarlane, W. R., Family Interventions for Schizophrenia and the Psychoses: A Review. Fam Process, 2016. 55(3): pp. 460–82.CrossRefGoogle ScholarPubMed
Bighelli, I., Salanti, G., Huhn, M., et al., Psychological interventions to reduce positive symptoms in schizophrenia: Systematic review and network meta-analysis. World Psychiatry, 2018. 17(3): pp. 316329.CrossRefGoogle ScholarPubMed
Drake, R. E. and Essock, S. M., The science-to-service gap in real-world schizophrenia treatment: The 95% problem. Schizophr Bull, 2009. 35(4): pp. 677678.CrossRefGoogle ScholarPubMed
American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed.). 2013, Washington, DC.Google Scholar
World Health Organization. ICD-11 Guideline GCP Network. 2021.Google Scholar
Gaebel, W., Status of psychotic disorders in ICD-11. Schizophr Bull, 2012. 38(5): pp. 895898.CrossRefGoogle ScholarPubMed
Gaebel, W., Stricker, J., Hasan, A., et al., The revised DGPPN and APA schizophrenia guidelines: Guideline quality and recommendations for long-term antipsychotic treatment. Schizophr Res, 2021. 229: pp. 137139.CrossRefGoogle ScholarPubMed
Gaebel, W. and Salveridou-Hof, E., Reinventing schizophrenia: Updating the construct – Primary schizophrenia 2021 – The road ahead. Schizophr Res, 2022. 242: pp. 2729.CrossRefGoogle ScholarPubMed
Galderisi, S. and Giordano, G. M., We are not ready to abandon the current schizophrenia construct, but should be prepared to do so. Schizophr Res, 2022. 242: pp. 3034.CrossRefGoogle ScholarPubMed
Giordano, G. M., Pezzella, P., Perrottelli, A., and Galderisi, S., Die “Präzisionspsychiatrie” muss Teil der “personalisierten Psychiatrie” werden. Fortschr Neurol Psychiatr, 2020. 88(12): pp. 767772.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×