Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T15:12:49.610Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  20 April 2023

Janina Kotus
Affiliation:
Warsaw University of Technology
Mariusz Urbański
Affiliation:
University of North Texas
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Meromorphic Dynamics
Abstract Ergodic Theory, Geometry, Graph Directed Markov Systems, and Conformal Measures
, pp. 469 - 477
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, J., An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, vol. 50, American Mathematical Society (1997). 2.3, 5.1, 5.2, 5.3, 5.3Google Scholar
Aaronson, J., Denker, M., Urbański, M., Ergodic theory for Markov fibered systems and parabolic rational maps, Trans. Am. Math. Soc. 337 (1993), 495548. (Preface)CrossRefGoogle Scholar
Abramov, L.M., On the entropy of a flow, Dokl. Akad. Nauk. SSSR. 128 (1959), 873875. 6.6Google Scholar
Ahlfors, L.V., Zur Theorie der Überlagerungsflächen, Acta Math. 65 (1935), 157194. 8.2Google Scholar
Alexander, D.S., A History of Complex Dynamics from Schröder to Fatou and Julia, Springer Fachmedien Wiesbaden (1994). Originally published by Friedr. Vieweg & Sohn Verlagsgesellschaft (1994). Softcover reprint of the hardcover first edition (1994). (Preface), 8Google Scholar
Alexander, D.S., Iavernaro, F., Rosa, A., Early Days in Complex Dynamics: A History of Complex Dynamics in One Variable During 1906–1942, History of Mathematics, vol. 38, American Mathematical Society, London Mathematical Society (2012). (Preface), 8Google Scholar
Astala, K., Iwaniec, T., Martin, G., Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Mathematical Series, vol. 48, Princeton University Press (2009). 8.2Google Scholar
Baker, I.N., Multiply connected domain of normality in iteration theory, Math. Z. 81 (1963), 206214. (Preface)Google Scholar
Baker, I.N., Kotus, J., , Y., Iterates of meromorphic functions I, Ergodic Theory Dyn. Syst. 11 (1991), 241248. (Preface)CrossRefGoogle Scholar
Baker, I.N., Kotus, J., , Y., Iterates of meromorphic functions II: Examples of wandering domains, J. Lond. Math. Soc. 42 (1990), 267278.Google Scholar
Baker, I.N., Kotus, J., , Y., Iterates of meromorphic functions III: Preperiodic domains, Ergodic Theory Dyn. Syst. 11 (1991), 603618.Google Scholar
Baker, I.N., Kotus, J., , Y., Iterates of meromorphic functions IV: Critically finite functions, Results Math. 22 (1992), 651656. (Preface)Google Scholar
Barański, K., Hausdorff dimension and measures on Julia sets of some meromorphic maps, Funda. Math. 147 (1995), 239260. (Preface)CrossRefGoogle Scholar
Barański, K., Karpińska, B., Zdunik, A., Bowen’s formula for meromorphic functions, Ergodic Theory Dyn. Syst. 32:4 (2012), 11651189. 10Google Scholar
Barański, K., Karpińska, B., Zdunik, A., Conformal measures for meromorphic maps, Ann. Acad. Sci. Fenn. Math. 43:1 (2018), 247266. 10Google Scholar
Beardon, A.F., Iteration of Rational Maps, Graduate Texts in Mathematics, vol. 132, Springer-Verlag (1991). (Introduction), 8.6Google Scholar
Bedford, T., Hausdorff dimension and box dimension in self-similar sets, Proc. Conf. Topology and Measure V, Ernst–Moritz–Arndt Universität Greisfwald (1988). 11.5Google Scholar
Bergweiler, W., Iteration of meromorphic functions, Bull. New Ser. Am. Math. Soc. 29:2 (1993), 151188. (Preface)Google Scholar
Bieberbach, L., Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Preuss. Akad. Wiss., Phys.-Math. Kl., 138 (1916), 940955. 8.3Google Scholar
Billingsley, P., Ergodic Theory and Information, R. E. Krieger Pub. Co. (1978). 9.5Google Scholar
Billingsley, P., Probability and Measure, 3rd ed., John Wiley & Sons (1995). 1.4, 1.4, 1.4, 3.3Google Scholar
Birkhoff, G.D., Proof of the ergodic theorem, Proc. Natl. Acad. Sci. USA 17 (1931), 656660. 2, 2.3Google Scholar
Bogachev, V.I., Measure Theory, vols. I and II, Springer-Verlag (2007). 11.6Google Scholar
Bowen, R., Equilibrium states and the ergodic theory for Anosov diffeomorphisms, Lecture Notes in Mathematics, vol. 470, Springer-Verlag (1975). 7, 7.5Google Scholar
Bowen, R., Hausdorff dimension of quasi-circles, Publ. Math. IHES 50 (1980), 1125. 9.5, 11.5Google Scholar
Branner, B., Fagella, N., Quasiconformal Surgery in Holomorphic Dynamics, Cambridge Studies in Advanced Mathematics, vol. 141, Cambridge University Press (2014). 8.2Google Scholar
Chousionis, V., Leykekhman, D., Urbański, M., Dimension spectrum of conformal graph directed Markov systems, Sel. Math. New Ser. 25 (2019), 40. (Introduction), 11Google Scholar
Chousionis, V., Leykekhman, D., Urbański, M., On the dimension spectrum of infinite subsystems of continued fractions, Trans. Am. Math. Soc. 373 (2020), 10091042. (Introduction), 11Google Scholar
Chousionis, V., Urbański, M., Porosity in conformal dynamical systems, Math. Proc. Camb. Philos. Soc. 172 (2022), 303371. (Introduction), 11Google Scholar
Chousionis, V., Tyson, J., Urbański, M., Conformal Graph Directed Markov Systems on Carnot Groups, Memoirs of the American Mathematical Society, vol. 266, American Mathematical Society (2020). (Introduction), 11, 11.6, 11.6Google Scholar
Cohn, D., Measure Theory, 2nd ed., Birkhäuser Advanced Texts/Basler Lehrbücher, Birkhäuser (2013). 1.1, 1.2Google Scholar
Denker, M., Mauldin, R.D., Nitecki, Z., Urbański, M., Conformal measures for rational functions revisited, Funda. Math. 157 (1998), 161173. 10.3Google Scholar
Denker, M., Urbański, M., On the existence of conformal measures, Trans. Am. Math. Soc. 328 (1991), 563587. (Introduction), 10, 10.1Google Scholar
Denker, M., Urbański, M., Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point, J. Lond. Math. Soc. 43 (1991), 107118. 1.3, 10CrossRefGoogle Scholar
Denker, M., Urbański, M., On Sullivan’s conformal measures for rational maps of the Riemann sphere, Nonlinearity 4 (1991), 365384. 10CrossRefGoogle Scholar
Denker, M., Urbański, M., On Hausdorff measures on Julia sets of subexpanding rational maps, Israel J. Math. 76 (1991), 193214. (Preface)Google Scholar
Denker, M., Urbański, M., Geometric measures for parabolic rational maps, Ergodic Theory Dyn. Syst. 12 (1992), 5366. (Preface), 10Google Scholar
Denker, M., Urbański, M., The capacity of parabolic Julia sets, Math. Z. 211 (1992), 7386. 10Google Scholar
Dobbs, N., Nice sets and invariant densities in complex dynamics, Math. Proc. Camb. Philos. Soc. 150 (2011), 157165. 12Google Scholar
Dunford, N., Schwartz, J., Linear Operators, Part 1: General Theory, Wiley-Interscience (1988). 3.2Google Scholar
Eggleston, H., Sets of fractional dimensions which occur in some problems of number theory, Proc. Lond. Math. Soc. 54 (1952), 4293. 9.5Google Scholar
Eremenko, A., Lyubich, M., Dynamical properties of some classes of entire functions, Ann. Inst. Fourier, 42 (1992), 9891020. (Preface)Google Scholar
Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, 2nd ed., Wiley (2003). 1.5Google Scholar
Falconer, K., Techniques in Fractal Geometry, Wiley (1997). 1.5Google Scholar
Falconer, K., The Geometry of Fractal Sets, Cambridge University Press (1985). 1.5Google Scholar
de Faria, E., de Melo, W., Mathematical Tools for One-Dimensional Dynamics, Cambridge Studies in Advanced Mathematics, vol. 115, Cambridge University Press (2008). 8.2Google Scholar
Fatou, P., Sur les équations fonctionelles, Bull. Soc. Math. France 47 (1919), 161271. (Preface)Google Scholar
Fatou, P., Sur les équations fonctionelles transcendantes, Bull. Soc. Math. France 48 (1920), 208314. (Preface)Google Scholar
Fatou, P., Sur l’itération des fonctions transcendantes entéries, Acta Math. 47 (1926), 337370. (Preface)Google Scholar
Fletcher, A., Markovic, V., Quasiconformal Maps and Teichmüller Theory, Oxford Graduate Texts in Mathematics, Oxford University Press (2006). 8.2CrossRefGoogle Scholar
Forster, O., Lectures on Riemann Surfaces, Springer-Verlag (1981). 8.1.1, 8.5Google Scholar
Folland, G., Real Analysis: Modern Techniques and Their Applications, 2nd ed., Wiley (2007). 1.1, 1.2Google Scholar
Gardiner, F., Lakic, N., Quasiconformal Teichmuller Theory, Mathematical Surveys & Monographs, vol. 76, American Mathematical Society (1999). 8.2Google Scholar
Gouëzel, S., Central limit theorem and stable laws for intermittent maps, Probab. Theory Relat. Fields 128 (2004), 82122. (Introduction), 4, 4.2, 4.2Google Scholar
Gouëzel, S., Almost sure invariance principle for dynamical systems by spectral methods, Ann. Probab. 38 (2010), 16391671. 4.2Google Scholar
Grötzsch, H., Über die Verzerrung bei schlichten nicht-konformen Abbildungen und über eine damit zusammenhängende Erweiterung des Picardschen Satzes, Sitzungsberichte sächs. Akad. Wiss., Math.–Phys. Klasse, 80 (1928), 503507. 8.2Google Scholar
Guzmán, M., Differentiation of Integrals in Rn, Lecture Notes in Mathematics, vol. 541, Springer Verlag (1976). 1.3Google Scholar
Hatcher, A., Algebraic Topology, Cambridge University Press (2002). 8.1.1, 8.2Google Scholar
Hausdorff, F., Dimension und äußeres Maß, Math. Ann. 79 (1919), 157179. 1.5, 1.5Google Scholar
Hawkins, J., Koss, L., Ergodic properties and Julia sets of Weierstrass elliptic functions, Monatsh. Math. 137 (2002), 273301. (Preface)Google Scholar
Heinonen, J., Lectures on Analysis on Metric Spaces, Universitext, Springer (2001). 1.3CrossRefGoogle Scholar
Hensley, D., Continued Fractions, World Scientific (2006). 11Google Scholar
Hille, E., Analytic Function Theory, vols. I and II, Ginn and Company (1962). 8.3Google Scholar
Hubbard, J., Teichmuller Theory and Applications to Geometry, Topology, and Dynamics, Matrix Editions (2006). 8.2Google Scholar
Hutchinson, J.E., Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713747. 11.5Google Scholar
Julia, G., Me´moire sur l’iteration des fonctions rationnelles, J. Math. Pures Appl. 8 (1918), 47245. (Preface)Google Scholar
Katok, A., Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, revised ed., Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, (1996). 2.3Google Scholar
Kodaira, K., Complex Analysis, Cambridge University Press (2007). 8.1.1Google Scholar
Kotus, J., On the Hausdorff dimension of Julia sets of meromorphic functions. II, Bull. Soc. Math. Fr. 128 (1995), 3346. (Preface)Google Scholar
Kotus, J., Urbański, M., Conformal, geometric and invariant measures for transcendental expanding functions, Math. Ann. 324 (2002), 619656. (Preface)Google Scholar
Kotus, J., Urbański, M., Existence of invariant measures for transcendental subexpanding functions, Math. Z. 243 (2003) 2536. 2.4, 10CrossRefGoogle Scholar
Kotus, J., Urbański, M., Hausdorff dimension and Hausdorff measures of elliptic functions, Bull. Lond. Math. Soc. 35 (2003), 269275. (Preface)Google Scholar
Kotus, J., Urbański, M., Geometry and ergodic theory of non-recurrent elliptic functions, J. Anal. Math. 93 (2004) 35102. (Preface)Google Scholar
Kuratowski, K., Topology II, Academic Press and PWN, (1968). 12.1, 12.1, 12.2Google Scholar
Lehto, O., Univalent Functions and Teichmüller Spaces, Springer (2011). 8.2Google Scholar
Lehto, O., Virtanen, K.I., Quasiconformal Mappings in the Plane, SpringerVerlag (1973). 8.2, 8.2Google Scholar
Ljubich, M., Dynamics of rational transforms: topological picture, Russ. Math. Surv. 41:4 (1986), 43117. 10.3Google Scholar
Lyubich, M., The measurable dynamics of the exponential map, Siberian J. Math. 28 (1987), 111127. (Preface)Google Scholar
Mañé, R., The Hausdorff dimension of invariant probabilities of rational maps, Lecture Notes in Mathematics, vol. 1331, (1988), 86117. 9.5Google Scholar
Mañé, R., Ergodic Theory and Differentiable Dynamics, Springer (1987). 9.2, 9.2.3Google Scholar
Manning, A., McCluskey, H., Hausdorff dimension for horseshoes, Ergodic Theory Dyn. Syst. 3 (1983), 251260. 9.5Google Scholar
Martens, M., The existence of σ-finite invariant measures, Applications to real one-dimensional dynamics. https://arxiv.org/abs/math/9201300. (Introduction), 2.4Google Scholar
Massey, W., A Basic Course in Algebraic Topology, Springer (1991). 8.2Google Scholar
Mattila, P., Geometry of Sets and Measures in Euclidean Spaces, Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, Cambridge University Press (1995). 1.3, 1.5Google Scholar
Mauldin, R.D., Przytycki, F., Urbański, M., Rigidity of conformal iterated function systems, Compos. Math. 129 (2001), 273299. (Introduction), 11Google Scholar
Mauldin, R.D., Szarek, T., Urbański, M., Graph directed Markov systems on Hilbert spaces, Math. Proc. Camb. Philos. Soc. 147 (2009), 455488. (Introduction), 1.3, 11, 11.5Google Scholar
Mauldin, R.D., Urbański, M., Dimensions and measures in infinite iterated function systems, Proc. Lond. Math. Soc. 73:3 (1996), 105154. (Preface), (Introduction), 10, 11, 11.3.2, 11.5, 11.5, 11.9Google Scholar
Mauldin, R.D., Urbański, M., Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets, Cambridge Tracts in Mathematics, Cambridge University Press (2003). (Preface), (Introduction), 4.2, 10, 11, 11.3.2, 11.3, 11.4, 11.5, 11.5, 11.6, 11.6, 11.9, 11.9Google Scholar
Mauldin, R.D., Urbański, M., Conformal iterated function systems with applications to the geometry of continued fractions, Trans. Am. Math. Soc. 351 (1999), 49955025. (Introduction), 11CrossRefGoogle Scholar
Mauldin, R.D., Urbański, M., Gibbs states on the symbolic space over an infinite alphabet, Israel J. Math. 125 (2001), 93130. (Preface), (Introduction), 11, 11.6Google Scholar
Mauldin, R.D., Urbański, M., Fractal measures for parabolic IFS, Advances in Mathematics, vol. 168 (2002), 225253. (Introduction), 11Google Scholar
Mayer, V., Skorulski, B., Urbański, M., Random Distance Expanding Mappings, Thermodynamic Formalism, Gibbs Measures, and Fractal Geometry, Lecture Notes in Mathematics, vol. 2036, Springer (2011). 10Google Scholar
Mayer, V., Urbański, M., Gibbs and equilibrium measures for elliptic functions, Math. Z. 250 (2005), 657683. (Preface)Google Scholar
Mayer, V., Urbański, M., Geometric Thermodynamical Formalism and Real Analyticity for Meromorphic Functions of Finite Order, Ergodic Theory Dyn. Syst. 28 (2008), 915946. (Preface), 10Google Scholar
Mayer, V., Urbański, M., Thermodynamical Formalism and Multifractal Analysis for Meromorphic Functions of Finite Order, Memoirs of the American Mathematical Society, vol. 203, no. 954, American Mathematical Society (2010). (Preface), 10Google Scholar
Mayer, V., Urbański, M., Thermodynamical formalism for entire functions and integral means spectrum of asymptotic tracts, Trans. Am. Math. Soc. 373 (2020), 76697711. (Preface)Google Scholar
Mayer, V., Urbański, M., Thermodynamic formalism and geometric applications for transcendental meromorphic and entire functions, in Pollicott, M., Vaienti, S. (eds.), Thermodynamic Formalism: CIRM Jean-Morlet Chair, Fall 2019, Springer (2021), 99139. (Preface)Google Scholar
McMullen, C., Area and Hausdorff dimension of Julia sets of entire functions, Trans. Am. Math. Soc. 300 (1987), 329342. 1.7, 1.7Google Scholar
McMullen, C., Hausdorff dimension and conformal dynamics II: Geometrically finite rational maps, Comment. Math. Helv. 75 (2000), 535593. 10.3Google Scholar
Melbourne, I., Nicol, M., Almost sure invariance principle for nonuniformly hyperbolic systems, Commun. Math. Phys. 260 (2005), 131146. 4.2Google Scholar
Melbourne, I., Terhesiu, D., Decay of correlations for nonuniformly expanding systems with general return times, Ergodic Theory Dyn. Syst. 34 (2014), 893918. 5.3Google Scholar
Misiurewicz, M., A short proof of the variational principle for a ZN+ action on a compact space, Bull. Acad. Pol. Math. 24 (1976), 10691075. 7, 7.5Google Scholar
Nehari, Z., Conformal Mapping, Dover Books on Advanced Mathematics, Dover Publications (1975). 8.2Google Scholar
von Neumann, J., Proof of the quasi-ergodic hypothesis, Proc. Natl. Acad. Sci. USA 18 (1932), 7082. 2.3Google Scholar
Newman, M.H.A., Elements of the Topology of Plane sets of Points, Greenswood Press (1985). 12.1, 12.2Google Scholar
Parthasarathy, K.R., Introduction to Probability and Measure, Hindustan Book Agency (2005). 4.3Google Scholar
Patterson, S.J., The limit set of a Fuchsian group, Acta Math. 136 (1976), 241273. (Introduction), 10, 10.1.1Google Scholar
Patterson, S.J., Lectures on measures on limit sets of Kleinian groups, in Epstein, D.B.A. (ed.), Analytical and Geometric Aspects of Hyperbolic Space, London Mathematical Society, Lecture Note Series, vol. 111, Cambridge University Press (1987). (Introduction), 10, 10.1.1Google Scholar
Pesin, Ya., Families of invariant manifolds corresponding to nonzero characteristic exponents, Math. USSR Izv. 10 (1976), 12611305. 9.3Google Scholar
Pesin, Ya., Characteristic exponents and smooth ergodic theory, Russ. Math. Surv. 32 (1977), 55114. 9.3Google Scholar
Phelps, R., Lectures on Choquet’s Theorem, Lecture Notes in Mathematics, vol. 1757, Springer (2001). 7.5.1Google Scholar
Przytycki, F., Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map, Invent. Math. 80 (1985), 169171. 9.5Google Scholar
Przytycki, F., Lyapunov characteristic exponents are nonnegative, Proc. AMS 119 (1993), 309317. 9.1Google Scholar
Przytycki, F., Rivera-Letelier, J., Statistical properties of topological Collet-Eckmann maps, Ann. Sci. É c. Norm. Supér. 40 (2007), 135178. (Preface), 12Google Scholar
Przytycki, F., Urbański, M., Conformal Fractals: Ergodic Theory Methods, London Mathematical Society Lecture Notes Series, vol. 371, Cambridge University Press (2010). 1.5, 7, 9.2, 9.3Google Scholar
Przytycki, F., Urbański, M., Zdunik, A., Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps I, Ann. Mathe. 130 (1989), 140. 9.5Google Scholar
Rees, M., The exponential map is not recurrent, Math. Z. 191 (1986), 593598. (Preface)Google Scholar
Rivera-Letelier, J., A connecting lemma for rational maps satisfying a nogrowth condition, Ergodic Theory Dyn. Syst. 27 (2007), 595636. 12Google Scholar
Rogers, C.A., Hausdorff Measures, Cambridge University Press (1998). 1.5Google Scholar
Royden, H., Fitzpatrick, P., Real Analysis, Classic Version, 4th ed., Pearson Modern Classics for Advanced Mathematics Series, Pearson (2017). 1.1, 1.2Google Scholar
Ruelle, D., Thermodynamic Formalism, Encyclopedia of Mathematics and its Applications, vol. 5, Addison-Wesley, Reading, MA. (1976). 7Google Scholar
Ruelle, D., An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat. 9 (1978), 8387. 9.4Google Scholar
Schiff, J.L., Normal Families, Universitext, Springer (1993). 8.1.2Google Scholar
Shannon, C., A mathematical theory of communication, Bell Syst. Techn. J., 27 (1948), 379423, 623–656. 6Google Scholar
Shannon, C., The Mathematical Theory of Communication, University of Illinois Press (1949). 6Google Scholar
Sinai, Ya.G., On the notion of entropy of a dynamical system, Dokl. Akad. Nauk SSSR 124 (1959), 768771. 6Google Scholar
Sinai, Ya.G., Gibbs measures in ergodic theory, Russ. Math. Surv. 27 (1972), 2170. 7Google Scholar
Skorulski, B., Urbański, M., The Law of Iterated Logarithm and equilibrium measures versus Hausdorff measures for dynamically semi-regular meromorphic functions, in Barral, J., Seuret, S. (eds.), Further Developments in Fractals and Related Fields, Trends in Mathematics, Birkhäuser (2013), 213234. 4.1Google Scholar
Srivastava, S.M., A Course on Borel Sets, Graduate Texts in Mathematics, vol. 180, Springer-Verlag (1998). 10.1.1, 10.1.1Google Scholar
Stallard, G., Entire functions with Julia sets of zero measure, Math. Proc. Camb. Philos. Soc. 108 (1990), 551557. (Preface)Google Scholar
Stallard, G., The Hausdorff dimension of Julia sets of entire functions, Ergodic Theory Dyn. Syst. 11 (1991), 769777. (Preface)Google Scholar
Sullivan, D., Seminar on conformal and hyperbolic geometry, Institut des Hautes Études Scientifiques, preprint (1982). (Introduction), 10, 10.1.1Google Scholar
Sullivan, D., Conformal dynamical systems. in Palis, J. (ed.), Geometric Dynamics, Lecture Notes in Mathematics, vol. 1007, Springer Verlag (1981), 725752. 10.1.1Google Scholar
Sullivan, D., Quasiconformal homeomorphisms in dynamics, topology, and geometry, Proceedings of the International Congress of Mathematicians, Berkeley, American Mathematical Society, (1986), 12161228. 10Google Scholar
Sullivan, D., The density at infinity of a discrete group, Inst. Hautes Études Sci. Pub. Math. 50 (1979), 259277. 10, 10.1.1Google Scholar
Sullivan, D., Entropy, Hausdorff measures old and new, and the limit set of a geometrically finite Kleinian groups, Acta Math. 153 (1984), 259277. 1.5, 1.5Google Scholar
Sullivan, D., Disjoint spheres, approximation by imaginary quadratic numbers and the logarithmic law for geodesics, Acta Math. 149 (1982), 215237. (Introduction), 10, 10.1.1Google Scholar
Sumi, H., Urbański, M., Measures and dimensions of Julia sets of semi-hyperbolic rational semigroups, Discrete Contin. Dyn. Syst. 30 (2011), 313363. 2.4Google Scholar
Szostakiewicz, M., Urbański, M., Zdunik, A., Fine inducing and equilibrium measures for rational functions of the Riemann sphere, Israel J. Math. 210 (2015), 399465. 4.1, 4.2Google Scholar
Taylor, S.J., Tricot, C., Packing measure, and its evaluation for a Brownian path, Trans. Am. Math. Soc. 288 (1985), 679699. 1.5, 1.5Google Scholar
Thaler, M., Zweimüller, R., Distributional limit theorems in infinite ergodic theory, Probab. Theory Relat. Fields 135, (2006), 1552. 5.3, 5.3, 5.3Google Scholar
Tricot, C., Two definitions of fractional dimension, Math. Proc. Camb. Philos. Soc. 91 (1982), 5774. 1.5, 1.5Google Scholar
Urbański, M., The Hausdorff dimension of the set of points with non-dense orbit under a hyperbolic dynamical system, Nonlinearity 4 (1991), 385397. 1.7, 1.7Google Scholar
Urbański, M., On some aspects of fractal dimensions in higher dimensional dynamics, Proc. of the Göttingen Workshop Problems on Higher Dimensional Complex Dynamics, Mathematica Gottingensis 3 (1995), 1825. 10.3Google Scholar
Urbański, M., Rational functions with no recurrent critical points, Ergodic Theory Dyn. Syst. 14 (1994), 391414. (Preface), 8.4, 10.4Google Scholar
Urbański, M., Geometry and ergodic theory of conformal non-recurrent dynamics, Ergodic Theory Dyn. Syst. 17 (1997), 14491476. (Preface), 5.4Google Scholar
Urbański, M., Diophantine approximation of self-conformal measures, J. Number Theory 110 (2005) 219235. (Introduction), 11Google Scholar
Urbański, M., Porosity in conformal infinite iterated function systems, J. Number Theory 88 (2001), 283312. (Introduction), 11Google Scholar
Urbański, M., Zdunik, A., The finer geometry and dynamics of exponential family, Mich. Math. J. 51 (2003), 227250. (Preface), 10, 10.3Google Scholar
Urbański, M., Zdunik, A., Real analyticity of Hausdorff dimension of finer Julia sets of exponential family, Ergodic Theory Dyn. Syst. 24 (2004), 279315. (Preface), 10Google Scholar
Walters, P., A variational principle for the pressure of continuous transformations, Am. J. Math. 97 (1975), 937971. 7, 7.5Google Scholar
Walters, P., An Introduction to Ergodic Theory, Graduate Text in Mathematics, Springer-Verlag (2000). 7Google Scholar
Young, L.-S., Dimension, entropy and Lyapunov exponents, Ergodic Theory Dyn. Syst. 2 (1982), 109124. 9.5Google Scholar
Young, L.-S., Statistical properties of dynamical systems with some hyperbolicity, Ann. Math. 147 (1998) 585650. (Introduction), 4, 4.2Google Scholar
Young, L.-S., Recurrence times and rates of mixing, Israel J. Math. 110 (1999), 153188. (Preface), (Introduction), 4, 4.2, 4.2, 4.2Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Janina Kotus, Warsaw University of Technology, Mariusz Urbański, University of North Texas
  • Book: Meromorphic Dynamics
  • Online publication: 20 April 2023
  • Chapter DOI: https://doi.org/10.1017/9781009215930.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Janina Kotus, Warsaw University of Technology, Mariusz Urbański, University of North Texas
  • Book: Meromorphic Dynamics
  • Online publication: 20 April 2023
  • Chapter DOI: https://doi.org/10.1017/9781009215930.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Janina Kotus, Warsaw University of Technology, Mariusz Urbański, University of North Texas
  • Book: Meromorphic Dynamics
  • Online publication: 20 April 2023
  • Chapter DOI: https://doi.org/10.1017/9781009215930.018
Available formats
×