Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-26T20:23:51.989Z Has data issue: false hasContentIssue false

3 - Electrical Measurement Techniques

Published online by Cambridge University Press:  19 August 2009

Peter Aaen
Affiliation:
Freescale Semiconductor, AZ
Jaime A. Plá
Affiliation:
Freescale Semiconductor, AZ
John Wood
Affiliation:
Maxim Integrated Products
Get access

Summary

Introduction

Obtaining precise measurement data at microwave frequencies is a demanding task. Complex equipment and elaborate calibration procedures are needed, and a significant fraction of the time needed to generate a model is spent on the collection of measurement data. Measurement quality and accuracy are paramount, as they are the basis for generation and validation of models.

Historically, significant advances in transistor modeling have coincided with the development of new measurement techniques. The more obvious examples include: the introduction of the vector network analyzer to measure small-signal scattering parameters [1,2]; mechanical and electronic loadpull systems for mapping the small-signal (for example, noise parameters) and the large-signal (power, linearity, and so forth) performance parameters as a function of the impedance presented to the transistor [3]; pulsed DC [4–6] and S-parameter [7, 8] systems used to overcome complex transistor dynamics and dispersive phenomena. More recently, the development of the large-signal vector network analyzer has enabled the characterization of transistors under realistic large-signal modulations [9–11].

In this chapter, we elaborate on general issues related to the measurement environment, including a description of the fixtures used during the model extraction and validation processes. In addition, we shall present a description of the different calibration schemes used during the measurement process followed by an explanation of the de-embedding process. Subsequently, we shall describe measurement techniques that are essential for the generation and validation of high-power transistor models.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×