Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-22T14:26:05.941Z Has data issue: false hasContentIssue false

8 - Multiple Projector Camera System for Three-Dimensional Gait Recognition

from PART III - HYBRID BIOMETRIC SYSTEMS

Published online by Cambridge University Press:  25 October 2011

Koichiro Yamauchi
Affiliation:
Keio University
Bir Bhanu
Affiliation:
University of California at Riverside
Hideo Saito
Affiliation:
Keio University
Bir Bhanu
Affiliation:
University of California, Riverside
Venu Govindaraju
Affiliation:
State University of New York, Buffalo
Get access

Summary

Introduction

The human body has fascinated scientists for thousands of years. Studying the shape of the human body offers opportunities to open up entirely new areas of research. The shape of the human body can be used to infer personal characteristics and features. Body type and muscle strength, for instance, can be used to distinguish gender. The presence or absence of wrinkles around the eyes and loose facial skin suggests a person's age. In addition, the size and shape of a person's face, belly, thighs, and arms can determine a body habitus: slim, healthy, or overweight. The length of individual limbs such as legs and their postural sway when a person walks suggests an underlying misalignment of the bone structure. It is, in fact, possible to identify people by their physical body shape of the entire body. Unlike traditional physical measures of height, width, and length of body parts, the body shape is represented by a closed surface of the entire human body as a 2-manifold. The surface is digitally captured and described by geometric primitives such as vertices, lines, and curves. It is useful for health professionals and technical experts to retrieve personal data from a shared database whenever the need arises. Using a large number of body shape measurements, valuable personal characteristics can be statistically analyzed. If there is a strong correlation between body shape and medical disease, for instance, we can avoid invasive diagnostic procedures such as medical imaging methods that utilize electromagnetic radiation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×