Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T14:21:02.817Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 May 2015

Gerald D. Langner
Affiliation:
Technische Universität, Darmstadt, Germany
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. C. 1983. Multipolar cells in the ventral cochlear nucleus project to the dorsal cochlear nucleus and the inferior colliculus. Neuroscience Letters 37: 205–208.CrossRefGoogle ScholarPubMed
Adams, J. C. 1997. Projections from octopus cells of the posteroventral cochlear nucleus to the ventral nucleus of the lateral lemniscus in cat and human. Auditory Neuroscience 3: 335–350.Google Scholar
Ade, P. A., Aikin, R. W., Barkats, D., et al. 2014. BICEP2 I: detection of B-mode polarization at degree angular scales. Physical Review Letters 112, doi: http://dx.doi.org/10.1103/PhysRevLett.112.241101.CrossRefGoogle ScholarPubMed
Aertsen, A. M. H. J. and Johannesma, P. I. M. 1980. Spectro-temporal receptive fields in auditory neurons in the grassfrog: I. Characterization of tonal and natural stimuli. Biological Cybernetics 38(4): 223–234.CrossRefGoogle Scholar
Aggleton, J. P. 1993. The contribution of the amygdala to normal and abnormal emotional states. Trends in Neuroscience 16(8): 328–333.CrossRefGoogle ScholarPubMed
Albert, M. 1994. Verarbeitung komplexer akustischer Signale im Colliculus inferior des Chinchillas: Funktionelle Eigenschaft und topographische Repräsentation. PhD diss., Darmstadt, TU-Darmstadt.
Aston-Jones, G. and Cohen, J. D. 2005. An integrative theory of locus coeruleus–norepinephrine function: adaptive gain and optimal performance. Annual Reviews in Neuroscience 28(1): 403–450.CrossRefGoogle ScholarPubMed
Bachem, A. 1955. Absolute pitch. Journal of the Acoustical Society of America 27: 1180–1185.CrossRefGoogle Scholar
Bahmer, A. and Langner, G. 2006a. Oscillating neurons in the cochlear nucleus: I. Experimental basis of a simulation paradigm. Biological Cybernetics 95: 371–379.Google ScholarPubMed
Bahmer, A. and Langner, G. 2006b. Oscillating neurons in the cochlear nucleus: II. Simulation results. Biological Cybernetics 95(4): 381–392.Google ScholarPubMed
Bahmer, A. and Langner, G. 2007. Simulation of oscillating neurons in the cochlear nucleus: a possible role for neural nets, onset cells, and synaptic delays. In Kollmeier, B., Klump, G., Langmann, U., et al. (eds), Hearing: From Sensory Processing to Perception. Berlin, Heidelberg: Springer: 155–164.Google Scholar
Bahmer, A. and Langner, G. 2009. A simulation of chopper neurons in the cochlear nucleus with wideband input from onset neurons. Biological Cybernetics 100(1): 21–33.CrossRefGoogle ScholarPubMed
Barker, A. D. 2012. The Oxford Classical Dictionary. New York: Oxford University Press.Google Scholar
Barnea, A., Granot, R. and Pratt, H. 1994. Absolute pitch: electrophysiological evidence. International Journal of Psychophysiology 16(1): 29–38.CrossRefGoogle ScholarPubMed
Bartos, M., Vida, I. and Jonas, P. 2007. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Reviews Neuroscience 8(1): 45–56.CrossRefGoogle ScholarPubMed
Başar, E., Başar-Eroğlu, C., Karakaş, S. and Schürmann, M. 2000. Brain oscillations in perception and memory. International Journal of Psychophysiology 35: 95–124.CrossRefGoogle ScholarPubMed
Başar, E., Başar-Eroğlu, C., Karakaş, S. and Schürmann, M. 2001. Gamma, alpha, delta, and theta oscillations govern cognitive processes. International Journal of Psychophysiology 39: 241–248.CrossRefGoogle ScholarPubMed
Başar, E., Başar-Eroğlu, C., Karakaş, S., Schürmann, M. and Ozgoron, M. 2004. Super-synergy in brain oscillations and the grandmother percept. International Journal of Bifurcation and Chaos 14: 453–491.CrossRefGoogle Scholar
Batra, R. 2006. Responses of neurons in the ventral nucleus of the lateral lemniscus to sinusoidally amplitude modulated tones. Journal of Neurophysiology 96(5): 2388–2398.CrossRefGoogle ScholarPubMed
Baumann, S., Griffiths, T., Sun, L., et al. 2011. Orthogonal representation of sound dimensions in the primate midbrain. Nature Neuroscience 14(4): 423–425.CrossRefGoogle ScholarPubMed
Bennett, M., Schatz, M., Rockwood, H. and Wiesenfeld, K. 2002. Huygens's clocks. Proceedings: Mathematical, Physical and Engineering Sciences 458: 563–579.Google Scholar
Benson, C. G. and Cant, N. B. 2008. The ventral nucleus of the lateral lemniscus of the gerbil (Meriones unguiculatus): organization of connections with the cochlear nucleus and the inferior colliculus. Journal of Comparative Neurology 510: 673–690.Google ScholarPubMed
Berke, J. D., Okatan, M., Skurski, J. and Eichenbaum, H. B. 2004. Oscillatory entrainment of striatal neurons in freely moving rats. Neuron 43(6): 883–896.CrossRefGoogle ScholarPubMed
Bernstein, J. G. and Oxenham, A. J. 2003. Pitch discrimination of diotic and dichotic tone complexes: harmonic resolvability or harmonic number?Journal of the Acoustical Society of America 113: 3323–3334.CrossRefGoogle ScholarPubMed
Bibikov, N. G. 1974. Encoding of the stimulus envelope in peripheral and central regions of the auditory system of the frog. Acta Acoustica 31: 310–314.Google Scholar
Bibikov, N. G. and Nizamov, S. V. 1996. Temporal coding of low-frequency amplitude modulation in the torus semicircularis of the grass frog. Hearing Research 101(1): 23–44.CrossRefGoogle ScholarPubMed
Bidelman, G. M. and Krishnan, A. 2009. Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem. Journal of Neuroscience 21: 13165–13171.Google Scholar
Biebel, U. W. and Langner, G. 2002. Evidence for interactions across frequency channels in the inferior colliculus of awake chinchilla. Hearing Research 169: 151–168.CrossRefGoogle ScholarPubMed
Birch, T. 1757. The History of the Royal Society of London for Improving of Natural Knowledge, From Its First Rise: In Which the Most Considerable of Those Papers Communicated to the Society, Which Have Hitherto not Been Published, are Inserted in their Proper Order, as a Supplement to the Philosophical Transactions (Vol. 3). London: A. Millar.Google Scholar
Bishop, P. O. 1953. Synaptic transmission: an analysis of the electrical activity of the lateral geniculate nucleus in the cat after optic nerve stimulation. Proceedings of the Royal Society B: Biological Sciences 141: 362–392.CrossRefGoogle ScholarPubMed
Blackburn, C. C. and Sachs, M. B. 1989. Classification of unit types in the anteroventral cochlear nucleus: PST histograms and regularity analysis. Journal of Neurophysiology 62: 1303–1329.CrossRefGoogle ScholarPubMed
Bodnar, D. A. and Bass, A. H. 2001. Coding of concurrent vocal signals by the auditory midbrain: effects of stimulus level and depth of modulation. Journal of the Acoustical Society of America 109: 809–825.CrossRefGoogle ScholarPubMed
Boethius, A. M. S. 1989. Fundamentals of Music. Translated by Bower, C. M., New Haven, CT and London: Yale University Press.Google Scholar
Bonke, D., Scheich, H. and Langner, G. 1979. Responsiveness of units in the auditory neostriatum of the guinea fowl (Numida meleagris) to species-specific calls and synthetic stimuli. Journal of Comparative Physiology 132: 243–255.Google Scholar
Born, J. A. N. and Wagner, U. 2004. Memory consolidation during sleep: role of cortisol feedback. Annals of the New York Academy of Sciences 1032: 198–201.CrossRefGoogle ScholarPubMed
Born, J., Rasch, B. R. and Gais, S. 2006. Sleep to remember. Neuroscience 12: 410–424.Google Scholar
Borst, J. G. G., Helmchen, F. and Sakmann, B. 1995. Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. Journal of Physiology 489(3): 825–840.CrossRefGoogle ScholarPubMed
Borst, M., Palm, G. and Langner, G. 2004. A biologically motivated neural network for phase extraction from complex sounds. Biological Cybernetics 90: 98–104.CrossRefGoogle ScholarPubMed
Bourk, T. R. 1976. Electrical responses of neural units in the antero-ventral cochlear nucleus of the cat. PhD diss., MIT, Cambridge, MA.
Braitenberg, V. 1983. The cerebellum revisited. Journal of Theoretical Neurobiology 2: 237–241.Google Scholar
Britt, R. and Starr, A. 1976. Synaptic events and discharge patterns of cochlear nucleus cells: I. Steady-frequency tone bursts. Journal of Neurophysiology 39: 162–178.Google ScholarPubMed
Brosch, M., Budinger, E. and Scheich, H. 2002. Stimulus-related gamma oscillations in primate auditory cortex. Journal of Neurophysiology 87: 2715–2725.CrossRefGoogle ScholarPubMed
Brown, P. and Marsden, C. D. 1998. What do the basal ganglia do?The Lancet 351: 1801–1804.CrossRefGoogle Scholar
Brugge, J. F.Blatchley, B. and Kudoh, M. 1993. Encoding of amplitude-modulated tones by neurons of the inferior colliculus of the kitten. Brain Research 615: 199–217.CrossRefGoogle ScholarPubMed
Bullock, T. H. 1961. The problem of recognition in an analyzer made of neurons. In Rosenblith, W. A. (ed.), Sensory Communication. Cambridge, MA: Technical Press: 717–724.Google Scholar
Burger, R. M. and Pollak, G. D. 1998. Analysis of the role of inhibition in shaping responses to sinusoidally amplitude-modulated signals in the inferior colliculus. Journal of Neurophysiology 80: 1686–1701.CrossRefGoogle ScholarPubMed
Burns, E. M. and Campbell, S. L. 1994. Frequency and frequency-ratio resolution by possessors of absolute and relative pitch: examples of categorical perception?Journal of the Acoustical Society of America 96(5): 2704–2719.CrossRefGoogle ScholarPubMed
Buzsáki, G. 2006. Rhythms of the Brain. New York: Oxford University Press.CrossRefGoogle Scholar
Cant, N. B. and Benson, C. G. 2003. Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Research Bulletin 60: 457–474.CrossRefGoogle ScholarPubMed
Cant, N. B. and Benson, C. G. 2008. Organization of the inferior colliculus of the gerbil (Meriones unguiculatus): projections from the cochlear nucleus. Neuroscience 154: 206–217.CrossRefGoogle ScholarPubMed
Caspary, D. M., Rupert, A. L. and Moushegian, G. 1977. Neuronal coding of vowel sounds in the cochlear nuclei. Experimental Neurology 54: 414–431.CrossRefGoogle ScholarPubMed
Caspary, D. M., Palombi, P. S. and Hughes, L. F. 2002. GABAergic inputs shape responses to amplitude modulated stimuli in the inferior colliculus. Hearing Research 168: 163–173.CrossRefGoogle ScholarPubMed
Cetas, J. S., Price, R. O., Velenovsky, D. S., Sinex, D. G. and McMullen, N. T. 2001. Frequency organization and cellular lamination in the medial geniculate body of the rabbit. Hearing Research 155: 113–123.CrossRefGoogle ScholarPubMed
Chistovich, L. A. and Lublinskaya, V. V. 1979. The center of gravity effect in vowel spectra and critical distance between the formants: psychoacoustical study of the perception of vowel-like stimuli. Hearing Research 1: 185–195.CrossRefGoogle Scholar
Chung, D. Y. and Colavita, F. B. 1976. Periodicity pitch perception and its upper frequency limit in cats. Perception and Psychophysics 20: 433–437.CrossRefGoogle Scholar
Chung, D. Y. and Geissmann, T. 2000. Gibbon songs and human music from an evolutionary perspective. In Wallin, N. L., Merker, B. and Brown, S. (eds), The Origins of Music. Cambridge, MA: MIT Press: 103–123.Google Scholar
Clodoré-Tissot, T. 2009. Instruments sonorés du Néolithique à l'aube de l'Antiquité. Cahier XII, Paris: Éditions S. P. F.Google Scholar
Conard, N. J., Malina, M. and Münzel, S. C. 2009. New flutes document the earliest musical tradition in southwestern Germany. Nature 460: 737–740.Google ScholarPubMed
Condon, C. J., White, K. R. and Feng, A. S. 1996. Neurons with different temporal firing patterns in the inferior colliculus of the little brown bat differentially process sinusoidal amplitude-modulated signals. Journal of Comparative Physiology A: Sensory, Neural and Behavioral Physiology 178: 147–157.CrossRefGoogle ScholarPubMed
Covey, E. and Casseday, J. H. 1999. Timing in the auditory system of the bat. Annual Review of Physiology 61(1): 457–476.CrossRefGoogle ScholarPubMed
Covey, E., Kauer, J. A. and Casseday, J. H. 1996. Whole-cell patch-clamp recording reveals subthreshold sound-evoked postsynaptic currents in the inferior colliculus of awake bats. Journal of Neuroscience 16: 3009–3018.CrossRefGoogle ScholarPubMed
Cynx, J. and Shapiro, M. 1986. Perception of missing fundamental by a species of songbird (Sturnus vulgaris). Journal of Comparative Psychology 100: 356–360.CrossRefGoogle Scholar
d'Angelo, E., Koekkoek, S., Lombardo, P., et al. 2009. Timing in the cerebellum: oscillations and resonance in the granular layer. Journal of Neuroscience 162: 805–815.Google ScholarPubMed
Darwin, C. 2004. The Descent of Man. Digireads.com Publishing.Google Scholar
Dau, T., Kollmeier, B. and Kohlrausch, B. 1997. Modeling auditory processing of amplitude modulation: II. Spectral and temporal integration. Journal of the Acoustical Society of America 102: 2906–2919.CrossRefGoogle ScholarPubMed
de Boer, E. 1956. Pitch of inharmonic signals. Nature 178: 535–536.Google ScholarPubMed
de Cheveigne, A. 2005. Pitch perception models. In Plack, C. J., Fay, R. R., Oxenham, A. J. and Poppe, A.N. (eds), Pitch. Neural Coding and Perception. New York: Springer: 169–233.Google Scholar
Decker, J. 1986. Simulation eines neuronalen Korrelationsmodells für eine akustische Periodenanalyse. Thesis, Darmstadt: TU-Darmstadt.
Delgutte, B. 1980. Representation of speech-like sounds in the discharge patterns of auditory nerve fibers. Journal of the Acoustical Society of America 68: 843–857.CrossRefGoogle ScholarPubMed
Delgutte, B. and Kiang, N. Y. 1984. Speech coding in the auditory nerve: I. Vowel‐like sounds. Journal of the Acoustical Society of America 75: 866–878.Google ScholarPubMed
Dermott, S. F. 1973. Bode's law and the resonant structure of the solar system. Nature Physical Science 244: 18–21.CrossRefGoogle Scholar
Deutsch, D., Henthorn, T., Marvin, E. and Xu, H. 2006. Absolute pitch among American and Chinese conservatory students: prevalence differences, and evidence for a speech-related critical period. Journal of the Acoustical Society of America 119: 719–722.CrossRefGoogle ScholarPubMed
Dinse, H. R., Godde, B., Hilger, T., et al. 1997. Optical imaging of cat auditory cortex cochleotopic selectivity evoked by acute electrical stimulation of a multi-channel cochlear implant. European Journal of Neuroscience 9: 113–119.CrossRefGoogle ScholarPubMed
Drobisch, M. W. 1855. Über musikalische Tonbestimmug und Temperatur. Abhandlungen der Mathematisch-Physkalischen Classe der Königlich-Sächsischen Gesellschaft der Wissenschaften zu Leipzig (www.uni-leipzig).
Ebeling, M. 2008. Neuronal periodicity detection as a basis for the perception of consonance: a mathematical model of tonal fusion. Journal of the Acoustical Society of America 124: 2320–2329.CrossRefGoogle ScholarPubMed
Eccles, J. C. 1964. The Physiology of Synapses. Berlin: Springer.CrossRefGoogle Scholar
Eckhorn, R. 1994. Oscillatory and non-oscillatory synchronizations in the visual cortex and their possible roles in the associations of visual features. Progress in Brain Research 102: 405–426.Google Scholar
Eckhorn, R., Bauer, R., Jordan, W., et al. 1988. Coherent oscillations: a mechanism of feature linking in the visual cortex?Biological Cybernetics 60: 121–130.CrossRefGoogle ScholarPubMed
Edelman, S. 2010. On look-ahead in language: navigating a multitude of familiar paths. In Bar, M. (ed.), Prediction in the Brain: Using the Past to Generate the Future. New York: Oxford University Press: 170–189.Google Scholar
Egorova, M. and Ehret, G. 2008. Tonotopy and inhibition in the midbrain inferior colliculus shape spectral resolution of sounds in neural critical bands. European Journal of Neuroscience 28(4): 675–692.CrossRefGoogle ScholarPubMed
Eguia, M. C., Garcia, G. C. and Romano, S. A. 2010. A biophysical model for modulation frequency encoding in the cochlear nucleus. Journal of Physiology 104: 118–127.Google ScholarPubMed
Ehret, G. 1997. The auditory cortex. Journal of Comparative Physiology A 181: 547–557.Google Scholar
Ehret, G. and Merzenich, M. M. 1985. Auditory midbrain responses parallel spectral integration phenomena. Science 227: 1245–1247.CrossRefGoogle ScholarPubMed
Engel, A. K. and Singer, W. 2001. Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Sciences 5: 16–25.CrossRefGoogle ScholarPubMed
Epping, W. J. M. and Eggermont, J. J. 1986. Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound: II. Stimulation with amplitude modulated sounds. Hearing Research 24: 55–72.Google Scholar
Evans, E. F. and Nelson, P. G. 1973. The responses of single neurons in the cochlear nucleus of the cat as a function of their location and the anaesthetic state. Experimental Brain Research 17: 402–427.CrossRefGoogle ScholarPubMed
Evans, E. and Palmer, A. 1980. Relationship between the dynamic range of cochlear nerve fibres and their spontaneous activity. Experimental Brain Research 40: 115–118.CrossRefGoogle ScholarPubMed
Faingold, C. L., Gehlbach, G. and Caspary, D. M. 1989. On the role of GABA as an inhibitory neurotransmitter in inferior colliculus neurons: iontophoretic studies. Brain Research 500: 301–312.CrossRefGoogle ScholarPubMed
Fellous, J. M. and Sejnowski, T. J. 2000. Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5–2 Hz), theta (5–12 Hz), and gamma (35–70 Hz) bands. Hippocampus 10: 187–197.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Ferragamo, M. J., Golding, N. L. and Oertel, D. 1998. Synaptic inputs to stellate cells in the ventral cochlear nucleus. Journal of Neurophysiology 79: 51–63.CrossRefGoogle ScholarPubMed
Fisahn, A., Pike, F. G., Buhl, E. H. and Paulsen, O. 1998. Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394: 186–189.CrossRefGoogle ScholarPubMed
Fishman, Y. I., Volkov, I. O., Noh, M. D., et al. 2001. Consonance and dissonance of musical chords: neural correlates in auditory cortex of monkeys and humans. Journal of Neurophysiology 86(6): 2761–2788.CrossRefGoogle ScholarPubMed
Fletcher, H. and Munson, W. A. 1933. Loudness, its definition, measurements and calculation. Journal of the Acoustical Society of America 5: 82–108.Google Scholar
Fourier, J. B. J. 1822. Théorie analytique de la chaleur. Didot.Google Scholar
Fries, P. 2009. Neuronal gamma-band synchronisation as a fundamental process in cortical computation. Annual Review of Neuroscience 32: 209–224.CrossRefGoogle Scholar
Fries, P., Reynold, J., Rorie, A. and Desimone, R. 2001. Modulation of oscillatory neuronal synchronisation by selective visual attention. Science 291(5508): 1560–1563.CrossRefGoogle Scholar
Frisina, R. D., Walton, J. P., Lynch-Armour, M. A., Hackett, J. T., Jackson, H. and Rubel, E. W. 1982. Synaptic excitation of the second and third order auditory neurons in the avian brain stem. Neuroscience 7: 1455–1469.Google Scholar
Frisina, R. D., Smith, R. L. and Chamberlain, S. C. 1985. Differential encoding of rapid changes in sound amplitude by second order auditory neurons. Experimental Brain Research 60: 417–422.CrossRefGoogle ScholarPubMed
Frisina, R. D., Smith, R. L. and Chamberlain, S. C. 1990. Encoding of amplitude modulation in the gerbil cochlear nucleus: II. Possible neural mechanisms. Hearing Research 44: 123–142.Google ScholarPubMed
Frisina, R. D., Walton, J. P. and Karcich, K. J. 1994. Dorsal cochlear nucleus single neurons can enhance temporal processing capabilities in background noise. Experimental Brain Research 102(1): 160–164.CrossRefGoogle ScholarPubMed
Frisina, R. D., Wang, J., Byrd, J., et al. 1997. Enhanced processing of temporal features of sounds in background noise by cochlear nucleus single neurons. In Syka, J. (ed.), Acoustical Signal Processing in the Central Auditory System. New York: Plenum Press: 109–125.Google Scholar
Fritz, T., Jentschke, S., Gosselin, N., et al. 2009. Universal recognition of three basic emotions in music. Current Biology 19: 573–576.CrossRefGoogle ScholarPubMed
Gabrielsson, A. 2012. Strong Experiences with Music: Music is Much More Than Just Music. Oxford: Oxford Scholarship.Google Scholar
Gaffurius, F. 1492.Theorica musice. Edited by Illuminati, I. and Bellissima, F.Firenze: Edizioni del Galluzzo (2005).Google Scholar
Geissmann, T. 2002. Duet-splitting and the evolution of gibbon songs. Biological Reviews 77(1): 57–76.CrossRefGoogle ScholarPubMed
Gibson, G., Warren, B. and Russell, I. J. 2010. Humming in tune: sex and species recognition by mosquitoes on the wing. Journal of the Association for Research in Otolaryngology 11(4): 527–540.CrossRefGoogle Scholar
Glassman, R. B. 1999. Hypothesized neural dynamics of working memory: several chunks might be marked simultaneously by harmonic frequencies within an octave band of brain waves. Brain Research Bulletin 50(2): 77–93.CrossRefGoogle ScholarPubMed
Glattke, T. J. 1969. Unit responses of the cat cochlear nucleus to amplitude-modulated stimuli. Journal of the Acoustical Society of America 45: 419–425.CrossRefGoogle ScholarPubMed
Godfrey, D. A., Kiang, N. Y. S. and Norris, B. E. 1975. Single unit activity in the posteroventral cochlear nucleus of the cat. Journal of Comparative Neurology 162: 247–268.Google ScholarPubMed
Goldberg, J. M. and Brownell, W. E. 1973. Discharge characteristics of neurons in anteroventral and dorsal cochlear nuclei of cat. Brain Research 64: 35–54.CrossRefGoogle ScholarPubMed
Goldstein, J. L. 1973. An optimum processor theory for the central formation of the pitch of complex tones. Journal of the Acoustical Society of America 54: 1496–1516.CrossRefGoogle ScholarPubMed
Grace, A. A. 1991. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41: 1–24.CrossRefGoogle ScholarPubMed
Gray, C. M. 1999. The temporal correlation hypothesis of visual feature integration: still alive and well. Neuron 24: 31–47.CrossRefGoogle ScholarPubMed
Gray, C. M., Engel, A. K., König, P. and Singer, W. 1990. Stimulus-dependent neuronal oscillations in cat visual cortex: inter-columnar interaction as determined by cross-correlation analysis. European Journal of Neuroscience 2(7): 607–619.Google Scholar
Greenberg, S. 1988. The ear as a speech analyzer. Journal of Phonetics 16: 139–149.Google Scholar
Griffiths, T. D. and Hall, D. A. 2012. Mapping pitch representation in neural ensembles with fMRI. Journal of Neuroscience 32(39): 13343–13347.CrossRefGoogle ScholarPubMed
Griffiths, T. D.Büchel, C., Frackowiak, R. S. and Patterson, R. D. 1998. Analysis of temporal structure in sound by the human brain. Nature Neuroscience 1(5): 422–427.CrossRefGoogle ScholarPubMed
Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D. and Wiesel, T. N. 1986. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324: 361–364.CrossRefGoogle ScholarPubMed
Gross, C. G. 2002. Genealogy of the ‘grandmother cell’. The Neuroscientist 8(5): 512–518.CrossRefGoogle Scholar
Gumbel, E. J., Greenwood, J. A. and Durand, D. 1953. The circular normal distribution: theory and tables. Journal of the American Statistical Association 48(261): 131–152.CrossRefGoogle Scholar
Hahn, J. and Münzel, S. 1995. Knochenflöten aus dem Aurignacien des Geissenklösterle bei Blaubeuren. Fundberichte aus Baden-Würtemberg 20: 1–12.Google Scholar
Hall, D. A. and Plack, C. J. 2009. Pitch processing sites in the human auditory brain. Cerebral Cortex 19(3): 576–585.CrossRefGoogle ScholarPubMed
Hartmann, W. M. 1997. Sounds, Signals, and Sensation: Modern Acoustics and Signal Processing. New York: Springer Verlag.Google Scholar
Hattori, T. and Suga, N. 1997. The inferior colliculus of the mustached bat has the frequency-vs-latency coordinates. Journal of Comparative Physiology A 180(3): 271–284.CrossRefGoogle ScholarPubMed
Hebb, D. O. 1961. Distinctive features of learning in the higher animal. In Delafresnaye, J. F. (ed.), Brain Mechanisms and Learning. Oxford: Blackwell: 37–51.Google Scholar
Heffner, H. E. and Whitfield, I. C. 1976. Perception of the missing fundamental by cats. Journal of the Acoustical Society of America 59: 915–919.CrossRefGoogle ScholarPubMed
Heil, P., Schulze, H. and Langner, G. 1995. Ontogenetic development of periodicity coding in the inferior colliculus of the mongolian gerbil. Auditory Neuroscience 1: 363–383.Google Scholar
Helmholtz, H. L. F. von 1863. Die Lehre von den Tonempfindungen. F. Vieweg und Sohn.Google Scholar
Helmholtz, H. L. F. von 1954. On the Sensation of Tone. New York: Dover Publications.Google Scholar
Hewitt, M. J., Meddis, R. and Shacklet, T. M. 1992. A computer-model of a cochlear-nucleus stellate cell: responses to amplitude-modulated and pure-tone stimuli. Journal of the Acoustical Society of America 91: 2096–2109.CrossRefGoogle ScholarPubMed
Hickmann, E. 2007. Klänge Altamerikas. Darmstadt: Wissenschaftliche Buchgemeinschaft.Google Scholar
Hirsch, H. R. and Gibson, M. M. 1976. Responses of single units in the cat cochlear nucleus to sinusoidal amplitude modulation of tones and noise: linearity and relation to speech perception. Journal of Neuroscience Research 2: 337–356,CrossRefGoogle ScholarPubMed
Hochmair, I. J. and Hochmair, E. S. 1986. System for Enhancing Auditory Stimulation and the Like. US Patent No. 4,577,641. Washington, DC: US Patent and Trademark Office.Google Scholar
Hopkins, C. D. 1974. Electric communication in the reproductive behavior of Sternopygus macrurus (Gymnotoidei). Zeitschrift für Tierpsychologie 35: 518–535.Google Scholar
Hornbostel, E. M. V. 1928. Die Maßnorm als kulturgeschichtliches Forschungsmittel. In Koppers, W. (ed.), Festschrift. Wien: Mechitharisten-Congregations-Buchdruckerei: 303–321.Google Scholar
Horst, J. W., Javel, E. and Farley, G. R. 1985. Extraction and enhancement of spectral structure by the cochlea. Journal of the Acoustical Society of America 78: 1898–1901.CrossRefGoogle ScholarPubMed
Horst, J. W., Javel, E. and Farley, G. R. 1986 . Coding of spectral fine-structure in the auditory-nerve: I. Fourier analysis of period and interspike interval histograms. Journal of the Acoustical Society of America 79: 398–416.CrossRefGoogle ScholarPubMed
Horst, J. W., Javel, E. and Farley, G. R. 1990. Coding of spectral fine-structure in the auditory nerve: II. Level-dependent nonlinear responses. Journal of the Acoustical Society of America 88: 2656–2681.CrossRefGoogle ScholarPubMed
Hose, B., Langner, G. and Scheich, H. 1983. Linear phoneme boundaries for German synthetic two-formant vowels. Hearing Research 9(1): 13–25.CrossRefGoogle ScholarPubMed
Hose., B., Langner, G. and Scheich, H. 1987. Topographic representation of periodicities in the forebrain of the mynah bird: one map for pitch and rhythm?Brain Research 422: 367–373.CrossRefGoogle ScholarPubMed
Hu, W. and White, M. 2004. The cosmic symphony. Scientific American 290(2): 44.CrossRefGoogle ScholarPubMed
Hübner, R. 1997. The effect of spatial frequency on global precedence and hemispheric differences. Perception & Psychophysics 59: 187–201.CrossRefGoogle ScholarPubMed
Hudspeth, A. J. 1997. Mechanical amplification of stimuli by hair cells. Current Opinion in Neurobiology 7: 480–486.CrossRefGoogle ScholarPubMed
Huffman, R. F. and Covey, E. 1995. Origin of ascending projections to the nuclei of the lateral lemniscus in the big brown bat, Eptesicus fuscus. Journal of Comparative Neurology 357: 532–545.Google ScholarPubMed
Hulse, S. H. and Cynx, J. 1985. Relative pitch perception is constrained by absolute pitch in songbirds (Mimus, Molothrus and Sturnus). Journal of Comparative Psychology 99(2): 176–196.CrossRefGoogle Scholar
Huxley, T. H. 1880. The Crayfish: An Introduction to Zoology. London: C. Kegan Paul & Co.CrossRefGoogle Scholar
Jähn-Siebert, T. K. and Langner, G. 1995. Afferent innervation and intrinsic connections of isofrequency sheets in the central nucleus colliculus (icc) in the chinchilla: a double retrograd tracer study. Learning and Memory V: 318.Google Scholar
Javel, E. 1980. Coding of AM tones in the chinchilla auditory nerve: implications for the pitch of complex tones. Journal of the Acoustical Society of America 68: 133–146.CrossRefGoogle ScholarPubMed
Javel, E. 1986. Basic response properties of auditory nerve fibers. In Altschuler, R. A, Hoffman, D. W. and Bobbin, R. P. (eds), Neurobiology of Hearing: The Cochlea. New York: Raven Press: 213–245.Google Scholar
Jeffress, L. A. 1948. A place theory of sound localization. Journal of Comparative and Physiological Psychology 41(1): 35–39.CrossRefGoogle ScholarPubMed
Jensen, O., Gelfand, J., Kounios, J. and Lisman, J. E. 2002. Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex 12(8): 877–882.CrossRefGoogle Scholar
Jones, M. W. and Wilson, M. A. 2005. Theta rhythms coordinate hippocampal–prefrontal interactions in a spatial memory task. Public Library of Science Biology 3: e402.Google Scholar
Joris, P. X. and. Smith, P. H. 1998. Temporal and binaural properties in dorsal cochlear nucleus and its output tract. Journal of Neuroscience 18: 10157–10170.Google ScholarPubMed
Joris, P. X. and Yin, T. C. T. 1992. Responses to amplitude-modulated tones in the auditory-nerve of the cat. Journal of the Acoustical Society of America 91: 215–232.CrossRefGoogle ScholarPubMed
Kaernbach, C. and Bering, C. 2001. Exploring the temporal mechanism involved in the pitch of unresolved harmonics. Journal of the Acoustical Society of America 110: 1039–1048.CrossRefGoogle ScholarPubMed
Kavanagh, J. F., Moore, J. K. and Osen, K. 1979. The cochlear nuclei in man. American Journal of Anatomy 154: 393–417.Google Scholar
Kazdin, A. 1989. Glenn Could at Work: Creative Lying. New York: E. P. Dutton.Google Scholar
Kim, D. O. and Molnar, C. E. 1979. A population study of cochlear nerve fibers: comparison of spatial distributions of average-rate and phase-locking measures of responses to single tones. Journal of Neurophysiology 42: 16–30.CrossRefGoogle ScholarPubMed
Kim, D. O., Sirianni, J. G. and Chang, S. O. 1990. Responses of DCN-PVCN neurons and auditory nerve fibers in unanesthetized decerebrate cats to AM and pure tones: analysis with autocorrelation/power-spectrum. Hearing Research 45: 95–113.CrossRefGoogle ScholarPubMed
Kimura, A., Imbe, H., Donishi, T. and Tamai, Y. 2007. Axonal projections of single auditory neurons in the thalamic reticular nucleus: implications for tonotopy-related gating function and cross-modal modulation. European Journal of Neuroscience 26: 3524–3535.CrossRefGoogle ScholarPubMed
Klumpp, R. G. and Eady, H. R. 1956. Some measurements of interaural time difference thresholds. Journal of the Acoustical Society of America 28: 859–860.CrossRefGoogle Scholar
Koelsch, S., Gunter, T., Friederici, A. D. and Schröger, E. 2000. Brain indices of music processing: nonmusicians are musical. Journal of Cognitive Neuroscience 12: 520–541.CrossRefGoogle ScholarPubMed
Kraushaar, U. and Backus, K. H. 2002. Characterization of GABAA and glycine receptors in neurons of the developing rat inferior colliculus. Pflügers Archiv 445(2): 279–288.CrossRefGoogle Scholar
Krishna, B. S. and Semple, M. N. 2000. Auditory temporal processing: responses to sinusoidally amplitude-modulated tones in the inferior colliculus. Journal of Neurophysiology 84: 255–273.CrossRefGoogle ScholarPubMed
Krumbholz, K.Patterson, R. D., Seither-Preisler, A., Lammertmann, C. and Lütkenhöner, B. 2003. Neuromagnetic evidence for a pitch processing center in Heschl's gyrus. Cerebral Cortex 13(7): 765–772.CrossRefGoogle ScholarPubMed
Krumhansl, C. L. 1990. Cognitive Foundations of Musical Pitch. New York: Oxford University Press.Google Scholar
Krumhansl, C. L. and Shepard, R. N. 1979. Quantification of the hierarchy of tonal functions within a diatonic context. Journal of Experimental Psychology: Human Perception and Performance 5(4): 579.Google ScholarPubMed
Kuhl, P. K., Andruski, J., Chistovich, I., et al. 1997. Cross-language analysis of phonetic units in language addressed to infants. Science 277(5326): 684–686.CrossRefGoogle ScholarPubMed
Kunst, J. 1948. Around von Hornbostel's theory of the cycle of blown fifths. Anthropos 45(4/6): 898–900.Google Scholar
Kuwada, S., Batra, R., Yin, T. C., Oliver, D. L., Haberly, L. B. and Stanford, T. R. 1997. Intracellular recordings in response to monaural and binaural stimulation of neurons in the inferior colliculus of the cat. Journal of Neuroscience 17(19): 7565–7581.CrossRefGoogle ScholarPubMed
Langner, G. 1981. Neuronal mechanisms for pitch analysis in the time domain. Experimental Brain Research 44: 450–454.CrossRefGoogle ScholarPubMed
Langner, G. 1983. Evidence for neuronal periodicity detection in the auditory system of the guinea fowl: implications for pitch analysis in the time domain. Experimental Brain Research 52: 333–355.CrossRefGoogle ScholarPubMed
Langner, G. 1985. Time coding and periodicity pitch. In Michelsen, A. (ed.), Time Resolution in Auditory Systems. Berlin: Springer: 108–121.Google Scholar
Langner, G. 1988. Physiological properties of units in the cochlear nucleus are adequate for a model of periodicity analysis in the auditory midbrain. In Syka, J. and Masterton, R. B. (eds), Auditory Pathway: Structure and Function. New York and London: Plenum Press: 207–212.Google Scholar
Langner, G. 1992. Periodicity coding in the auditory system. Hearing Research 60: 115–142.CrossRefGoogle ScholarPubMed
Langner, G. 1997. Neural processing and representation of periodicity pitch. Acta Oto-Laryngologica 117(S532): 68–76.CrossRefGoogle Scholar
Langner, G. 2004. Topographic representation of periodicity information: the 2nd neural axis of the auditory system. In Syka, J. and Merzenich, M. M. (eds), Plasticity of the Central Auditory System and Processing of Complex Acoustic Signals. New York and London: Plenum Press: 19–33.Google Scholar
Langner, G. and Scheich, H. 1978. Active phase coupling in electric fish: behavioral control with microsecond precision. Journal of Comparative Physiology 128: 235–240.Google Scholar
Langner, G. and Schreiner, C. E. 1988. Periodicity coding in the inferior colliculus of the cat: I. Neuronal mechanisms. Journal of Neurophysiology 60: 1799–1822.CrossRefGoogle ScholarPubMed
Langner, G., Bonke, D. and Scheich, H. 1981. Neuronal discrimination of natural and synthetic vowels in field L of trained mynah birds. Experimental Brain Research 43(1): 11–24.CrossRefGoogle Scholar
Langner, G., Decker, J., Günther, M. and Hose, B. 1987a. A computer model for periodicity analysis in the auditory midbrain based on physiological properties and connectivities of units in the cochlear nucleus. Society for Neuroscience, Abstracts 13(1): 546.Google Scholar
Langner, G., Schreiner, C. E. and Merzenich, M. M. 1987b. Covariation of latency and temporal resolution in the inferior colliculus of the cat. Hearing Research 31: 197–202.CrossRefGoogle ScholarPubMed
Langner, G., Sams, M., Heil, P. and Schulze, H. 1997. Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography. Journal of Comparative Physiology 181: 665–676.Google ScholarPubMed
Langner, G., Albert, M. and Briede, T. 2002. Temporal and spatial coding of periodicity information in the inferior colliculus of awake chinchilla (Chinchilla laniger). Hearing Research 168: 110–130.CrossRefGoogle Scholar
Langner, G., Simonis, C., Braun, S. and Ochse, M. 2003. Evidence for a pitch helix in the ventral nucleus of the lateral lemniscus in the gerbil. Association for Research in Otolaryngology, Abstracts 26: 173.Google Scholar
Langner, G., Galuske, R. and Zielke, B. 2006. Three-dimensional reconstruction of the human lateral lemniscus in the auditory midbrain reveals neuronal laminae organized as a double-helix. Forum of Neuroscience 3: A180.9.Google Scholar
Langner, G., Dinse, H. R. and Godde, B. 2009. A map of periodicity orthogonal to frequency representation in the cat auditory cortex. Frontiers in Integrative Neuroscience, 3, doi: 10.3389/neuro.07.027.2009.CrossRefGoogle ScholarPubMed
Large, E. W. and Crawford, J. D. 2002. Auditory temporal computation: interval selectivity based on post-inhibitory rebound. Journal of Computational Neuroscience 13(2): 125–142.CrossRefGoogle ScholarPubMed
LeBeau, F. E. N., Malmierca, M. S. and Rees, A. 2001. Iontophoresis in vivo demonstrates a key role for GABA(A) and glycinergic inhibition in shaping frequency response areas in the inferior colliculus of guinea pig. Journal of Neuroscience 21: 7303–7312.CrossRefGoogle ScholarPubMed
LeDoux, J. E. 1992. Brain mechanisms of emotion and emotional learning. Current Opinion in Neurobiology 2(2): 191–197.CrossRefGoogle ScholarPubMed
Lesser, H. D., Frisina, R. D. and O'Neill, W. E. 1986. Responses to amplitude-modulated sounds in the inferior colliculus of the mustached bat. Society for Neuroscience, Abstracts 1: 1270.Google Scholar
Lettvin, J. Y., Maturana, H. R., McCulloch, W. S. and Pitts, W. H. 1959. What the frog's eye tells the frog's brain. Proceedings of the IRE 47(11): 1940–1951.CrossRefGoogle Scholar
Levitin, D. J. and Rogers, S. E. 2005. Absolute pitch: perception, coding, and controversies. Trends in Cognitive Sciences 9(1): 26–33.CrossRefGoogle ScholarPubMed
Liberman, M. C. 1978. Auditory-nerve response from cats raised in a low-noise chamber. Journal of the Acoustical Society of America 63: 442–445.CrossRefGoogle Scholar
Licklider, J. C. R. 1941. An electrical study of frequency localization in the auditory cortex of the cat. Psychology Bulletin 38: 727.Google Scholar
Licklider, J. C. R. 1951. A duplex theory of pitch perception. Experientia 7: 128–134.CrossRefGoogle ScholarPubMed
Liégeois-Chauvel, C., Peretz, I., Babaï, M., Laguitton, V. and Chauvel, P. 1998. Contribution of different cortical areas in the temporal lobes to music processing. Brain 121: 1853–1867.CrossRefGoogle ScholarPubMed
Llinás, R. and Mühlethaler, M. 1988. An electrophysiological study of the in vitro, perfused brain stem-cerebellum of adult guinea-pig. Journal of Physiology 404: 215–240.Google ScholarPubMed
Loewenstein, Y., Mahon, S., Chadderton, P., et al. 2005. Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nature Neuroscience 8: 202–211.CrossRefGoogle ScholarPubMed
Lorente de Nó, R. 1981. The Primary Acoustic Nuclei. New York: Raven.Google Scholar
Maier, V. 1982. Acoustic communication in the guinea fowl (Numida meleagris): structure and use of vocalizations, and the principles of message coding. Zeitschrift für Tierphysiologie 59: 29–83.Google Scholar
Malmierca, M. S., Leergaard, T., Bajo, V., et al. 1998. Anatomic evidence of a three-dimensional mosaic pattern of tonotopic organization in the ventral complex of the lateral lemniscus in cat. Journal of Neuroscience 18: 10603–10618.CrossRefGoogle ScholarPubMed
Malmierca, M. S., Izquierdo, M. A., Cristaudo, S., et al. 2008. A discontinuous tonotopic organization in the inferior colliculus of the rat. Journal of Neuroscience 28(18): 4767–4776.CrossRefGoogle ScholarPubMed
Malsburg, C. V. D. 1999. The what and why of binding: the modeler's perspective. Neuron 24(1): 95–104.Google ScholarPubMed
Malsburg, C. V. D. and Schneider, W. 1986. A neural cocktail-party processor. Biological Cybernetics 54: 29–40.Google ScholarPubMed
Mann, T. 1997. Doctor Faustus: The Life of the German Composer Adrian Leverknotopic. Translation by Woods, John E. New York: Alfred A. Knopf.Google Scholar
Margoliash, D. 2005. Song learning and sleep. Nature Neuroscience 8: 546–548.CrossRefGoogle ScholarPubMed
Matell, M. S. and Meck, W. H. 2004. Cortico-striatal circuits and interval timing: coincidence-detection of oscillatory processes. Cognitive Brain Research 21: 139–170.CrossRefGoogle ScholarPubMed
Maudsley, H. 1884. Body and Will. New York: D. Appleton and Company.Google Scholar
McDermott, J. and Hauser, M. 2005. The origins of music: innateness, uniqueness, and evolution. Music Perception 23: 29–59.CrossRefGoogle Scholar
McKinney, M. F, Tramo, M. J. and Delgutte, B. 2001. Neural correlates of the dissonance of musical intervals in the inferior colliculus. In Breebaart, D. J., Houtsma, A. J. M., Kohlrausch, A., Prijs, V. F. and Schoonhoven, R. (eds), Physiological and Psychophysical Bases of Auditory Function. Maastricht: Shaker: 83–89.Google Scholar
Meddis, R. and Hewitt, M. 1991. Virtual pitch and phase sensitivity of a computer model of the auditory periphery: I. Pitch identification. Journal of the Acoustical Society of America 89: 2866–2882.Google Scholar
Meddis, R. and O'Mard, L. 1997. A unitary model of pitch perception. Journal of the Acoustical Society of America 102: 1811–1820.CrossRefGoogle ScholarPubMed
Merchan, M. A. and Berbel, P. 1996. Anatomy of the ventral nucleus of the lateral lemniscus in rats: a nucleus with a concentric laminar organization. Journal of Comparative Neurology 372(2): 245–263.Google ScholarPubMed
Merzenich, M. M. and Reid, M. D. 1974. Representation of the cochlea within the inferior colliculus of the cat. Brain Research 77(3): 397–415.CrossRefGoogle ScholarPubMed
Merzenich, M. M., Knight, P. L. and Roth, G. L. 1976. Representation of the cochlea within primary auditory cortex in the cat. Journal of Neurophysiology 38: 231–249.Google Scholar
Metzner, W. and Radtke-Schuller, S. 1987. The nuclei of the lateral lemniscus in the rufous horseshoe bat, Rhinolophus rouxi: a neurophysiological approach. Journal of Comparative Physiology A 160: 395–411.CrossRefGoogle ScholarPubMed
Meuer, K., Wallhäusser-Franke, E. and Langner, G. 2003. Projection from inferior colliculus to the lateral lemniscus studied in a slice preparation with anterograde tracers. In Elsner, E. and Zimmermann, H. (eds), The Neurosciences from Basic Research to Therapy. Stuttgart: Thieme: 435–436.Google Scholar
Miller, M. I. and Sachs, M. B. 1984. Representation of voice pitch in discharge patterns of auditory-nerve fibers. Hearing Research 14(3): 257–279.CrossRefGoogle ScholarPubMed
Mink, J. W. 2003. The basal ganglia and involuntary movements: impaired inhibition of competing motor patterns. Archives of Neurology 60: 1365–1368.CrossRefGoogle ScholarPubMed
Misawa, H. and Suga, N. 2001. Multiple combination-sensitive neurons in the auditory cortex of the mustached bat. Hearing Research 151: 15–29.CrossRefGoogle ScholarPubMed
Mogdans, J. and Knudsen, E. I. 1993. Early monaural occlusion alters the neural map of interaural level differences in the inferior colliculus of the barn owl. Brain Research 619: 29–38.CrossRefGoogle ScholarPubMed
Møller, A. R. 1970. Two different types of frequency selective neurons in the cochlear nucleus of the rat. In Plomp, R and Smoorenburg, G. F. (eds), Frequency Analysis and Periodicity Detection in Hearing. Leiden: Sijthoff: 168–174.Google Scholar
Møller, A. R. 1971. Unit responses in the rat cochlear nucleus to tones of rapidly varing frequency and amplitude. Acta Physiologica Scandinavica 81: 540–556.CrossRefGoogle Scholar
Møller, A. R. 1972. Coding of sounds in lower levels of the auditory system. Quarterly Reviews of Biophysics 5: 59–155.CrossRefGoogle ScholarPubMed
Møller, A. R. 1974a. Responses of units in cochlear nucleus to sinusoidally amplitude-modulated tones. Experimental Neurology 45: 104–117.CrossRefGoogle ScholarPubMed
Møller, A. R. 1974b. Coding of sounds with rapidly varying spectrum in the cochlear nucleus. Journal of the Acoustical Society of America 55: 631–640.CrossRefGoogle ScholarPubMed
Møller, A. R. 1976. Dynamic properties of the responses of single neurons in the cochlear nucleus of the rat. Journal of Physiology 259: 63–82.CrossRefGoogle ScholarPubMed
Møller, A. R. and Rees, A. 1986. Dynamic properties of the responses of single neurons in the inferior colliculus of the rat. Hearing Research 24: 203–215.CrossRefGoogle ScholarPubMed
Montgomery, S. M. and Buzsaki, G. 2007. Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proceedings of the National Academy of Sciences 104: 14495–14500.CrossRefGoogle ScholarPubMed
Moore, B. C. J. 1982. An Introduction to the Psychology of Hearing. London: Academic Press.Google Scholar
Moore, B. C. J., Glasberg, B. R., Flanagan, H. J. and Adams, J. 2006. Frequency discrimination of complex tones: assessing the role of component resolvability and temporal fine structure. Journal of the Acoustical Society of America 119(1): 480–490.CrossRefGoogle ScholarPubMed
Moore, T. J. and Cashin, J. L. 1974. Response patterns of cochlear nucleus neurons to excerpts from sustained vowels. Journal of the Acoustical Society of America 56: 1565–1576.CrossRefGoogle ScholarPubMed
Moore, T. J. and Cashin, J. L. Jr 1976. Response of cochlear-nucleus neurons to synthetic speech. Journal of the Acoustical Society of America 59: 1443–1449.CrossRefGoogle ScholarPubMed
Moore, T. J. and Osen, K. K. 1979. The human cochlear nuclei. In Creutzfeldt, O, Scheich, H. and Schreiner, C. (eds), Hearing Mechanisms and Speech. Berlin: Springer: 36–44.Google Scholar
Morest, D. K., Kiang, N., Kane, E., Guinan, J. and Godfrey, D. 1973. Stimulus coding at caudal levels of the cat's auditory nervous system. II. Patterns of synaptic organization. In Møller, A. R. (ed.), Basic Mechanisms in Hearing. New York: Academic Press.Google Scholar
Munk, M. H., Roelfsema, P. R., König, P., Engel, A. K. and Singer, W. 1996. Role of reticular activation in the modulation of intracortical synchronization. Science 272(5259): 271–274.CrossRefGoogle ScholarPubMed
Münzel, S., Seeberger, F. and Hein, W. 2002. The Geißenklösterle flute: discovery, experiments, reconstruction. Studien zur Musikarchäologie III: 107–118.Google Scholar
Murray, C. D. and Dermott, S. F. 1999. Solar System Dynamics. Cambridge: Cambridge University Press.Google Scholar
Musil, R. 1982. Die Schwärmer. Reinbek: Rowohlt.Google Scholar
Nelson, P. G. and Erulkar, S. D. 1963. Synaptic mechanisms of excitation and inhibition in the central auditory pathway. Journal of Neurophysiology 26: 908–923.CrossRefGoogle ScholarPubMed
Nunez, P. L. and Shrinivasan, R. 2006. Electric Fields of the Brain: The Neurophysics of EEG. New York: Oxford University Press.CrossRefGoogle Scholar
Ochse, M. 1999. Intrazelluläre Ableitungen am Gehirnschnittpräparat: Untersuchungen im dorsalen Nucleus cochlearis des Gerbils (Meriones unguiculatus). Darmstadt: TU-Darmstadt.Google Scholar
Ochse, M. 2005. Neuronale Kodierung von Tonhöhen und harmonischen Relationen im auditorischen Mittelhirn der Rennmaus (Meriones unguiculatus). PhD diss., Darmstadt: TU-Darmstadt, (http://tuprints.ulb.tu-darmstadt.de/id/eprint/524).
Ochse, M. and Langner, G. 2002. Periodizitätskodierung durch Autokorrelation und synchrone Inhibition im auditorischen Mittelhirn. DAGA 2: 456.Google Scholar
Ochse, M. and Langner, G. 2003. Modulation tuning in the auditory midbrain of gerbils: band passes are formed by inhibition. In Elsner, E. and Zimmermann, H. (eds), The Neurosciences from Basic Research to Therapy. Stuttgart: Thieme: 434–435.Google Scholar
Oertel, D. and Young, E. D. 2004. What's a cerebellar circuit doing in the auditory system?Trends in Neurosciences 27(2): 104–110.CrossRefGoogle ScholarPubMed
Oertel, D., Wu, S. H. and Hirsch, J. A. 1988. Electrical characteristics of cells and neuronal circuitry in the cochlear nuclei studied with intracellular recording from brain slices. In Edelman, G. M., Gall, W. E. and Cowan, W. M. (eds), Auditory Function: Neurobiological Bases of Hearing. New York: Wiley: 313–336.Google Scholar
Oertel, D., Bal, R., Gardner, S., et al. 2000. Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus. Proceedings of the National Academy of Sciences 97: 11773–11779.CrossRefGoogle ScholarPubMed
Oertel, D., Wright, S., Cao, X. J., Ferragamo, M. and Bal, R. 2011. The multiple functions of T-stellate/multipolar/chopper cells in the ventral cochlear nucleus. Hearing Research 276(1): 61–69.CrossRefGoogle ScholarPubMed
Oliver, D. L. 2005. Neuronal organization in the inferior colliculus. In Winer, J. A. and Schreiner, C. E. (eds), The Inferior Colliculus. New York: Springer: 69–114.Google Scholar
Oliver, D. L. and Morest, D. K. 1984. The central nucleus of the inferior colliculus in the cat. Journal of Comparative Neurology 222: 237–264.Google ScholarPubMed
Opelt, F. W. 1852. Allgemeine Theorie der Musik auf den Rhythmus der Klangwellenpulse gegründet und durch neue Versinnlichnungsmittel erläutert. Leipzig: Barth.Google Scholar
Osen, K. K. 1969. Cytoarchitecture of the cochlear nuclei in the cat. Journal of Comparative Neurology 136: 453–484.Google ScholarPubMed
Osen, K. K. 1988. Anatomy of the mammalian cochlear nuclei: a review. In Syka, J. and. Masterton, R. B. (eds), Auditory Pathway, Structure and Function. New York: Plenum Press: 65–75.Google Scholar
Palmer, A. R. 1982. Encoding of rapid amplitude fluctuations by cochlear nerve fibres in the guinea pig. European Archives of Oto-Rhino-Laryngology 236: 197–202.Google ScholarPubMed
Pantev, C., Hoke, M., Lütkenhöner, B. and Lehnertz, K. 1989. Tonotopic organization of the auditory-cortex: pitch versus frequency representation. Science 246: 486–488.CrossRefGoogle ScholarPubMed
Parham, K. and Kim, D. O. 1995. Spontaneous and sound-evoked discharge characteristics of complex-spiking neurons in the dorsal cochlear nucleus of the unanesthetized decerebrated cat. Journal of Neurophysiology 73: 550–561.CrossRefGoogle Scholar
Patterson, R. D. and Moore, B. C. J. 1986. Auditory filters and excitation patterns as representations of frequency resolution. In Moore, B. C. J. (ed.), Frequency Selectivity in Hearing. London: Academic Press: 123–177.Google Scholar
Pesaran, B., Pezaris, J., Sahani, M., Mitra, P. and Andersen, R. 2002. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nature Neuroscience 5(8): 805–811.CrossRefGoogle ScholarPubMed
Peterson, G. E. and Barney, H. L. 1952. Control methods used in a study of the vowels. Journal of the Acoustical Society of America 24: 175–184.CrossRefGoogle Scholar
Pfeiffer, R. R. 1966. Classification of response patterns of spike discharges for units in the cochlear nucleus: tone-burst stimulation. Experimental Brain Research 1: 220–235.CrossRefGoogle ScholarPubMed
Pickles, J. O. 1988. An Introduction to the Physiology of Hearing (Vol. 2). London: Academic Press.Google Scholar
Pike, F. G., Goddard, R. S. and Suckling, J. M. 2000. Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents. Journal of Physiology 529(1): 205–213.CrossRefGoogle ScholarPubMed
Pinker, S. 1999. How the mind works. Annals of the New York Academy of Sciences 882(1): 119–127.CrossRefGoogle ScholarPubMed
Plack, C. J. and Oxenham, A. J. 2005. The psychophysics of pitch. In Pitch. New York: Springer: 7–55.CrossRefGoogle Scholar
Plomp, R. and Steeneken, H. J. M. 1971. Pitch versus timbre. In Seventh International Congress on Acoustics, Budapest: 378–380.Google Scholar
Rameau, J. 1950. Ph., Traité de l'harmonie (1722). In Strunk, O. (ed.), Source Readings in Music and History. New York: Norton (1998).Google Scholar
Rauschecker, J. P. and Scott, S. K. 2009. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature Neuroscience 12(6): 718–724.CrossRefGoogle ScholarPubMed
Rauschecker, J. P. and Tian, B. 2000. Mechanisms and streams for processing of ‘what’ and ‘where’ in auditory cortex. Proceedings of the National Academy of Sciences 97: 11800–11806.CrossRefGoogle ScholarPubMed
Reale, R. A. and Geisler, C. D. 1980. Auditory-nerve fiber encoding of two-tone approximations to steady-state vowels. Journal of the Acoustical Society of America 67(3): 891–902.CrossRefGoogle ScholarPubMed
Reale, R. A. and Imig, T. J. 1980. Tonotopic organization in auditory cortex of the cat. Journal of Comparative Neurology 192(2): 265–291.Google ScholarPubMed
Rees, A. and Langner, G. 2005. Temporal coding in the auditory midbrain. In Winer, J. A. and Schreiner, C. E. (eds), The Inferior Colliculus. New York: Springer: 346–376.Google Scholar
Rees, A. and Møller, A. R. 1983. Responses of neurons in the inferior colliculus of the rat to AM and FM tones. Hearing Research 10(3): 301–330.CrossRefGoogle ScholarPubMed
Rees, A. and Møller, A. R. 1987. Stimulus properties influencing the responses of inferior colliculus neurons to amplitude-modulated sounds. Hearing Research 27: 129–143.CrossRefGoogle ScholarPubMed
Rees, A. and Palmer, A. R. 1989. Neuronal responses to amplitude-modulated and pure-tone stimuli in the guinea pig inferior colliculus, and their modification by broad-band noise. Journal of the Acoustical Society of America 85: 1978–1994.CrossRefGoogle Scholar
Reimer, K. 1987. Coding of sinusoidally amplitude modulated acoustic stimuli in the inferior colliculus of the rufous horseshoe bat, Rhinolophus rouxi. Journal of Comparative Physiology A161: 305–313.Google Scholar
Reinhold, N., Kuehnel, S., Brand, M. and Markowitsch, H. J. 2006. Functional neuroimaging in memory and memory disturbances. Current Medical Imaging Reviews 2(1): 35–57.CrossRefGoogle Scholar
Rhode, W. S. 1994. Temporal coding of 200% amplitude modulated signals in the ventral cochlear nucleus of cat. Hearing Research 77: 43–68.CrossRefGoogle ScholarPubMed
Rhode, W. S. 1998. Neural encoding of single-formant stimuli in the ventral cochlear nucleus of the chinchilla. Hearing Research 117: 39–56.CrossRefGoogle ScholarPubMed
Rhode, W. S. 1999. Vertical cell responses to sound in cat dorsal cochlear nucleus. Journal of Neurophysiology 82: 1019–1032.CrossRefGoogle ScholarPubMed
Rhode, W. S. and Greenberg, S. 1994. Encoding of amplitude modulation in the cochlear nucleus of the cat. Journal of Neurophysiology 71: 1797–1825.CrossRefGoogle ScholarPubMed
Rhode, W. S. and Smith, P. H. 1986. Encoding timing and intensity in the ventral cochlear nucleus of the cat. Journal of Neurophysiology 56: 261–286.CrossRefGoogle ScholarPubMed
Rhode, W. S., Smith, P. H. and Oertel, D. 1983a. Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat dorsal cochlear nucleus. Journal of Comparative Neurology 213: 426–447.Google ScholarPubMed
Rhode, W. S., Oertel, D. and Smith, P. H. 1983b. Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus. Journal of Comparative Neurology 213: 448–463.Google ScholarPubMed
Rieger, M. 2006. Helmholtz Musicus. Die Objektivierung der Musik im 19. Jahrhundert durch Helmholtz’ Lehre von den Tonempfindungen. Darmstadt: WBG.Google Scholar
Riquelme, R., Saldaña, E., Osen, K. K., Ottersen, O. P. and Merchán, M. A. 2001. Colocalization of GABA and glycine in the ventral nucleus of the lateral lemniscus in rat: an in situ hybridization and semiquantitative immunocytochemical study. Journal of Comparative Neurology 432(4): 409–424.Google Scholar
Ritsma, R. J. 1967. Frequencies dominant in the perception of pitch of complex sounds. Journal of the Acoustical Society of America 42: 191–198.CrossRefGoogle ScholarPubMed
Ritsma, R. J. 1970. Periodicity detection. In Plomp, R. and Smoorenburg, G. F. (eds), Frequency Analysis and Periodicity Detection in Hearing. Leiden: Sijthoff: 250–266.Google Scholar
Rockel, A. J. and Jones, E. G. 1973. The neuronal organization of the inferior colliculus of the adult cat: I. The central nucleus. Journal of Comparative Neurology 147: 11–60.Google ScholarPubMed
Rolls, E. T., Critchley, H. D., Browning, A. S. and Inoue, K. 2006. Face-selective and auditory neurons in the primate orbitofrontal cortex. Experimental Brain Research 170(1): 74–87.CrossRefGoogle ScholarPubMed
Rose, G. J. and Capranica, R. R. 1985. Sensitivity to amplitude modulated sounds in the anuran auditory nervous system. Journal of Neurophysiology 53: 446–465.CrossRefGoogle ScholarPubMed
Rose, J. E., Hind, J. E., Anderson, D. J. and Brugge, J. F. 1971. Some effects of stimulus intensity on response of auditory nerve fibers in the squirrel monkey. Journal of Neurophysiology 34(4): 685–699.CrossRefGoogle ScholarPubMed
Rossing, T. D. 1989. The Science of Sound. Reading, MA: Addison Wesley.Google Scholar
Rouiller, E. M. and Ryugo, D. K. 1984. Intracellular marking of physiologically characterized cells in the ventral cochlear nucleus of the cat. Journal of Comparative Neurology 225: 167–186.Google ScholarPubMed
Ruggero, M. A. and Rich, N. C. 1987. Timing of spike initiation in cochlear afferents: dependance on site of innervation. Journal of Neurophysiology 58: 379–403.CrossRefGoogle Scholar
Rupert, A. L. R., Caspary, D. M. and Moushegian, G. 1977. Response characteristics of cochlear nucleus neurons to vowel sounds. Annals of Otology, Rhinology, and Laryngology 86: 37–48.CrossRefGoogle ScholarPubMed
Sabatini, B. L. and Regehr, W. G. 1999. Timing of synaptic transmission. Annual Review of Physiology 61(1): 521–542.CrossRefGoogle ScholarPubMed
Sachs, M. and Kiang, N. Y. C. 1968. Two-tone inhibition in auditory nerve fibers. Journal of the Acoustical Society of America 43: 1120–1128.CrossRefGoogle ScholarPubMed
Sachs, M. B. and Young, E. D. 1979. Encoding of steady-state vowels in the auditory nerve: representation in terms of discharge rate. Journal of the Acoustical Society of America 66: 470–479.CrossRefGoogle ScholarPubMed
Sachs, M. B., Blackburn, C. and Young, E. D. 1988. Rate-place and temporal-place representations of vowels in the auditory nerve and anteroventral cochlear nucleus. Journal of Phonetics 16: 37–53.Google Scholar
Scheich, H., Langner, G. and Koch, R. 1977. Coding of narrow-band and wide-band vocalizations in the auditory midbrain nucleus (MLD) of the guinea fowl (Numida meleagris). Journal of Comparative Physiology 117: 245–265.Google Scholar
Scheich, H., Bock, W., Bonke, D., Langner, G. and Maier, V. 1983. Acoustic communication in the guinea fowl (Numida meleagris). In Advances in Vertebrate Neuroethology. New York: Springer: 731–782.Google Scholar
Schildberger, K. 1984. Temporal selectivity of identified auditory neurons in the cricket brain. Journal of Comparative Physiology 155: 171–186.Google Scholar
Schneider, P., Sluming, V., Roberts, N., et al. 2005. Structural and functional asymmetry of lateral Heschl's gyrus reflects pitch perception preference. Nature Neuroscience 8(9): 1241–1247.CrossRefGoogle ScholarPubMed
Schofield, B. R. and Cant, N. B. 1997. Ventral nucleus of the lateral lemniscus in guinea pigs: cytoarchitecture and inputs from the cochlear nucleus. Journal of Comparative Neurology 379: 363–385.Google ScholarPubMed
Schouten, J. F. 1938. The perception of subjective tones. Proceedings of Koninklijke Nederlandse Akademie van Wetenschappen 41: 1086–1093.Google Scholar
Schouten, J. F. 1940a. The perception of pitch. Philips Technical Review 5: 286–294.Google Scholar
Schouten, J. F. 1940b. The residue, a new component in subjective sound analysis. Proceedings of Koninklijke Nederlandse Akademie van Wetenschappen 43: 356–365.Google Scholar
Schouten, J. F. 1970. The residue revisited. In Plomp, R. and Smoorenburg, G. F. (eds), Frequency Analysis and Periodicity Detection in Hearing. Leiden: Sijthoff: 41–54.Google Scholar
Schouten, J. F., Ritsma, R. J. and Cardozo, B. L. 1962. Pitch of the residue. Journal of the Acoustical Society of America 34: 1418–1424.CrossRefGoogle Scholar
Schreiner, C. E. and Langner, G. 1988. Coding of temporal patterns in the central auditory nervous system. In Edelmann, G. M., Gall, W. E. and Cowan, W. M. (eds), Auditory Function. New York: J. Wiley & Sons: 337–361.Google Scholar
Schreiner, C. E. and Langner, G. 1997. Laminar fine structure of frequency organization in auditory midbrain. Nature 388: 383–386.CrossRefGoogle ScholarPubMed
Schreiner, C. E. and Mendelson, J. R. 1990. Functional topography of cat primary auditory cortex: distribution of integrated excitation. Journal of Neurophysiology 64: 1442–1459.CrossRefGoogle ScholarPubMed
Schreiner, C. E. and Snyder, R. 1987. Modulation transfer characteristics of neurons in the dorsal cochlear nucleus of the cat. Society for Neuroscience, Abstracts 13: 1258.Google Scholar
Schreiner, C. E., Urbas, J. V. and Mehrgardt, S. 1983. Temporal resolution of amplitude modulation and complex signals in the auditory cortex of the cat. In Klinke, R. and Hartmann, R. (eds), Hearing: Physiological Bases and Psychophysics. Berlin: Springer: 169–175.Google Scholar
Schreiner, C. E., Read, H. L. and Sutter, M. L. 2000. Modular organization of frequency integration in primary auditory cortex. Annual Review of Neuroscience 23(1): 501–529.CrossRefGoogle ScholarPubMed
Schroeder, C. E. and Lakatos, P. 2009. Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neuroscience 32: 9–18.CrossRefGoogle ScholarPubMed
Schuller, G. 1979. Coding of small sinusoidal frequency and amplitude modulations in the inferior colliculus of the ‘CF-FM’ bat, Rhinolophus ferrumequinum. Experimental Brain Research 34: 117–132.CrossRefGoogle ScholarPubMed
Schulze, H. and Langner, G. 1999. Representation of signal periodicity in the auditory cortex. Zeitschrift für Audiologie II: 7–12.Google Scholar
Schulze, H., Hess, A., Ohl, F. W. and Scheich, H. 2002. Superposition of horseshoe‐like periodicity and linear tonotopic maps in auditory cortex of the Mongolian gerbil. European Journal of Neuroscience 15(6): 1077–1084.CrossRefGoogle ScholarPubMed
Schwarz, D. W. F. and Tomlinson, R. W. W. 1990. Spectral response patterns of auditory-cortex neurons to harmonic complex tones in alert monkey (Macaca-mulatta). Journal of Neurophysiology 64: 282–298.CrossRefGoogle Scholar
Seebeck, A. 1844. Über die Definition des Tones. Annalen der Physik 139: 353–368.CrossRefGoogle Scholar
Semal, C. and Demany, L. 1990. The upper limit of musical pitch. Music Perception 8: 165–175.CrossRefGoogle Scholar
Shadlen, M. N. and Movshon, J. A. 1999. Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24: 67–77.CrossRefGoogle ScholarPubMed
Shepard, R. N. 1982. Geometrical approximations to the structure of musical pitch. Psychological Review 89(4): 305–333.CrossRefGoogle ScholarPubMed
Shivapuja, B. G. R., Salvi, J. and Saunders, S. S. 1990. Response of auditory-nerve fibers to intensity increments in a multitone complex: neural correlates of profile analysis. Journal of the Acoustical Society of America 88: 2211–2221.CrossRefGoogle Scholar
Shore, S. E. and Zhou, J. 2006. Somatosensory influence on the cochlear nucleus and beyond. Hearing Research 216: 90–99.Google ScholarPubMed
Sinex, D. G. and Geisler, C. D. 1983. Responses of auditory-nerve fibers to consonant-vowel syllables. Journal of the Acoustical Society of America 73: 602–615.CrossRefGoogle ScholarPubMed
Singer, W. 1999. Neuronal synchrony: a versatile code for the definition of relations?Neuron 24: 49.CrossRefGoogle ScholarPubMed
Singer, W. 2001. Consciousness and the binding problem. Annals of the New York Academy of Sciences 929(1): 123–146.Google ScholarPubMed
Singer, W. 2007. Binding by synchrony. Scholarpedia 2(12): 1657.CrossRefGoogle Scholar
Singer, W. 2013. Cortical dynamics revisited. Trends in Cognitive Sciences 17(12): 616–626.CrossRefGoogle ScholarPubMed
Smith, R. L. 1979. Adaptation, saturation, and physiological masking in single auditory-nerve fibers. Journal of the Acoustical Society of America 650: 1660–1780.Google Scholar
Spirou, G. A., Davis, K. A., Nelken, I. and Young, E. D. 1999. Spectral integration by type II interneurons in dorsal cochlear nucleus. Journal of Neurophysiology 82: 648–663.CrossRefGoogle ScholarPubMed
Stauffer, E. K., Watt, D. G., Taylor, A., Reinking, R. M. and Stuart, D. G. 1976. Analysis of muscle receptor connections by spike-triggered averaging: 2. Spindle group II afferents. Journal of Neurophysiology 39(6): 1393–1402.CrossRefGoogle ScholarPubMed
Stein, A. von and Sarnthein, J. 2000. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology 38(3): 301–313.Google Scholar
Stiebler, J. and Ehret, G. 1985. Inferior colliculus of the house mouse: I. A quantitative study tonotopic organization, frequency representation, and tone-threshold representation. Journal of Comparative Neurology 238: 65–76.Google ScholarPubMed
Stokkum, I. H. M. V. 1987. Sensitivity of neurons in the dorsal medullary nucleus of the grassfrog to spectral and temporal characteristics of sound. Hearing Research 29: 223–235.Google Scholar
Stokkum, I. H. M. V. and Gielen, C. C. A. M. 1989. A model for the peripheral auditory nervous system of the grassfrog. Hearing Research 41(1): 71–85.Google ScholarPubMed
Stryker, M. P. 1989. Is grandmother an oscillation?Nature 338: 297–298.CrossRefGoogle ScholarPubMed
Stumpf, C. 1890. Tonpsychologie. Leipzig: Hirzel.Google Scholar
Stumpf, C. 1939. Erkenntnislehre (Vol. I). Leipzig: Barth.Google Scholar
Stumpf, C. 1940. Erkenntnislehre (Vol. II). Leipzig: Barth.Google Scholar
Suga, N. and O'Neill, W. E. 1979. Neural axis representing target range in the auditory cortex of the mustache bat. Science 206(4416): 351–353.CrossRefGoogle ScholarPubMed
Suga, N. and Schlegel, P. 1972. Analysis of information-bearing elements in complex sounds by auditory neurons of bats. Audiology 11: 58–72.Google ScholarPubMed
Suga, N. and Schlegel, P. 1973. Coding and processing in the auditory systems of the FM-signal-producing bats. Journal of the Acoustical Society of America 54: 174–190.CrossRefGoogle ScholarPubMed
Suga, N., Gao, E., Zhang, Y., Ma, X. and Olsen, J. F. 2000. The corticofugal system for hearing: recent progress. Proceedings of the National Academy of Sciences 97(22): 11807–11814.CrossRefGoogle ScholarPubMed
Swindale, N. V. 2004. How different feature spaces may be represented in cortical maps. Network: Computation in Neural Systems 15(4): 217–242.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C., Bertrand, O., Peronnet, F. and Pernier, J. 1998. Induced γ-band activity during the delay of a visual short-term memory task in humans. Journal of Neuroscience 18(11): 4244–4254.CrossRefGoogle ScholarPubMed
Terhardt, E. 1972a. Zur Tonhöhenwahrnehmung von Klängen I. Psychoakustische Grundlagen. Acustica 26: 174–186.Google Scholar
Terhardt, E. 1972b. Zur Tonhöhenwahrnehmung von Klängen II. Ein Funktionsschema. Acustica 26: 187–199.Google Scholar
Terhardt, E. 1991. Music perception and sensory information acquisition: relationships and low-level analogies. Music Perception 8: 217–240.CrossRefGoogle Scholar
Thomas, H., Tillein, J., Heil, P. and Scheich, H. 1993. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus): I. Electrophysiological mapping of frequency representation and distinction of fields. European Journal of Neuroscience 5: 882–897.CrossRefGoogle ScholarPubMed
Tiesinga, P. H., Fellous, J. M., Salinas, E., José, J. V. and Sejnowski, T. J. 2004. Inhibitory synchrony as a mechanism for attentional gain modulation. Journal of Physiology 98(4–6): 296–314.Google ScholarPubMed
Tonndorf, J. 1960. Shearing motion in scala media of cochlear models. Journal of the Acoustical Society of America 32(2): 238–244.CrossRefGoogle Scholar
Torbett, M., Greenberg, R. and Smoluchowski, R. 1982. Orbital resonances and planetary formation sites. Icarus 49: 313–326.CrossRefGoogle Scholar
Trainor, L. J., Tsang, C. D. and Cheung, V. H. W. 2002. Preference for sensory consonance in 2- and 4-month-old infants. Music Perception 20: 187–194.CrossRefGoogle Scholar
Tramo, M. J., Cariani, P. A., Delgutte, B. and Braida, L. D. 2001. Neurobiological foundations for the theory of harmony in western tonal music. Annals of the New York Academy of Sciences 930: 92–116.Google ScholarPubMed
Treurniet, W. C. and Boucher, D. R. 2001. A masking level difference due to harmonicity. Journal of the Acoustical Society of America 109: 306–320.CrossRefGoogle ScholarPubMed
Tunturi, A. R. 1944. Audiofrequency localization in the acoustic cortex of the dog. American Journal of Physiology 141: 397–403.Google Scholar
Turner, R. S. 1977. The Ohm–Seebeck dispute, Hermann von Helmholtz, and the origins of physiological acoustics. British Journal for the History of Science 10: 1–24.CrossRefGoogle Scholar
Tyndall, J. 1893. Sound. London: Longmans, Green, and Co.Google Scholar
Ueda, K. and Ohgushi, K. 1987. Perceptual components of pitch: spatial representation using a multidimensional scaling technique. Journal of the Acoustical Society of America 82: 1193–1200.CrossRefGoogle ScholarPubMed
Uhlhaas, P. J., Haenschel, C., Nikolić, D. and Singer, W. 2008. The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophrenia Bulletin 34(5): 927–943.CrossRefGoogle ScholarPubMed
Vater, M. 1982. Single unit responses in cochlear nucleus of horseshoe bats to sinusoidal frequency and amplitude modulated signals. Journal of Comparative Physiology 149: 369–388.Google Scholar
Vater, M., Habbicht, H., Kössl, M. and Grothe, B. 1992. The functional-role of GABA and glycine in monaural and binaural processing in the inferior colliculus of horseshoe bats. Journal of Comparative Physiology 171: 541–553.Google ScholarPubMed
Vater, M., Covey, E. and Casseday, J. H. 1997. The columnar region of the ventral nucleus of the lateral lemniscus in the big brown bat (Eptesicus fuscus): synaptic arrangements and structural correlates of feedforward inhibitory function. Cell and Tissue Research 289(2): 223–233.CrossRefGoogle ScholarPubMed
Voigt, H. F. and Young, E. D. 1990. Cross-correlation analysis of inhibitory interactions in dorsal cochlear nucleus. Journal of Neurophysiology 64: 1590–1610.CrossRefGoogle ScholarPubMed
Voutsas, K. and Adamy, J. 2005. A biologically inspired spiking neural network for sound source localization. IEEE Transactions on Neural Networks 18: 1785–1799.Google Scholar
Walkowiak, W. 1984. Neuronal correlates of the recognition of pulsed sound signals in the grass frog. Journal of Comparative Physiology 155: 57–66.Google Scholar
Walton, J. P., Frisina, R. D. and O'Neill, W. E. 1998. Age-related alteration in processing of temporal sound features in the auditory midbrain of the CBA mouse. Journal of Neuroscience 18: 2764–2776.CrossRefGoogle ScholarPubMed
Ward, W. D. 1999. Absolute pitch. In Deutsch, D. (ed.), The Psychology of Music. New York: Academic Press: 265–298.Google Scholar
Warr, W. B. 1982. Parallel ascending pathways from the cochlear nucleus: neuroanatomical evidence of functional specialization. In Neff, W. D. (ed.), Sensory Physiology. New York: Academic Press: 1–38.Google Scholar
Warren, B., Gibson, G. and Russell, I. J. 2009. Sex recognition through midflight mating duets in Culex mosquitoes is mediated by acoustic distortion. Current Biology 19(6): 485–491.CrossRefGoogle ScholarPubMed
Watkins, S., Shams, L., Josephs, O. and Rees, G. 2007. Activity in human V1 follows multisensory perception. Neuroimage 37(2): 572–578.CrossRefGoogle ScholarPubMed
Wenstrup, J. J. and Grose, C. D. 1995. Inputs to combination-sensitive neurons in the medial geniculate body of the mustached bat: the missing fundamental. Journal of Neuroscience 15: 4693–4711.CrossRefGoogle ScholarPubMed
Wernicke, C. 1874. Der aphasische Sypmtomenkomplex eine psychologische Studie auf anatomischer Basis. Breslau: Hohn and Weigert.Google Scholar
Wever, E. G. 1949. Theory of Hearing. New York: Wiley.Google Scholar
Whittington, M. A. and Traub, R. D. 2003. Interneuron diversity series:inhibitory interneurons and network oscillations in vitro. Trends in Neuroscience 26: 676–682.Google Scholar
Wickesberg, R. E. and Oertel, D. 1990. Delayed frequency-specific inhibition in the cochlear nuclei of mice: a mechanism for monaural echo suppression. Journal of Neuroscience 10: 1762–1768.CrossRefGoogle ScholarPubMed
Wightman, F. L. 1973. The pattern-transformation model of pitch. Journal of the Acoustical Society of America 54: 407–416.CrossRefGoogle Scholar
Willard, F. H. and Martin, G. F. 1983. The auditory brainstem nuclei and some of their projections to the inferior colliculus in the North American opossum. Neuroscience 10(4): 1203–1232.CrossRefGoogle ScholarPubMed
Willott, J. F. and Bross, L. S. 1990. Morphology of the octopus cell area of the cochlear nucleus in young and aging C57BL/6J and CBA/J mice. Journal of Comparative Neurology 300: 61–81.Google Scholar
Winter, I. M., Robertson, D. and Yates, G. K. 1990. Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibres. Hearing Research 45: 191–202.CrossRefGoogle ScholarPubMed
Winter, P. and Funkenstein, H. H. 1973. The effect of species-specific vocalizations on the discharge of auditory cortical cells in the awake squirrel monkey (Saimiri sciureus). Experimental Brain Research 18: 489–504.CrossRefGoogle Scholar
Woolsey, C. G. and Walzl, E. M. 1942. Topical projection of nerve fibers from local regions of the cochlea to the cerebral cortex of the cat. Bulletin of the Johns Hopkins Hospital 71: 315–344.Google Scholar
Wu, S. H. 1999. Physiological properties of neurons in the ventral nucleus of the lateral lemniscus of the rat: intrinsic membrane properties and synaptic responses. Journal of Neurophysiology 81(6): 2862–2874.CrossRefGoogle ScholarPubMed
Xu, L. and Pfingst, B. E. 2008. Spectral and temporal cues for speech recognition: implications for auditory prostheses. Hearing Research 242(1–2): 132–140.CrossRefGoogle ScholarPubMed
Yost, W. A. and Sheft, S. 1994. Modulation detection interference: across-frequency processing and auditory grouping. Hearing Research 79: 48–58.CrossRefGoogle ScholarPubMed
Young, E. D. and Brownell, W. E. 1976. Responses to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized cats. Journal of Neurophysiology 39: 282–300.CrossRefGoogle ScholarPubMed
Young, E. D. and Sachs, M. B. 1979. Representation of steady state vowels in the temporal aspects of the discharge patterns of populations of auditory nerve fibers. Journal of the Acoustical Society of America 66: 1381–1403.CrossRefGoogle ScholarPubMed
Young, E. D., Robert, J. M. and Shofner, W. P. 1988. Regularity and latency of units in ventral cochlear nucleus: implications for unit classification and generation of response properties. Journal of Neurophysiology 60: 1–29.CrossRefGoogle ScholarPubMed
Zatorre, R. 2003. Music and the brain. Annals of the New York Academy of Sciences 999: 4–14.CrossRefGoogle Scholar
Zatorre, R. J. and Samson, S. 1991. Role of the right temporal neocortex in retention of pitch in auditory short-term memory. Brain 114(6): 2403–2417.CrossRefGoogle ScholarPubMed
Zatorre, R. J., Chen, J. L. and Penhune, V. B. 2007. When the brain plays music: auditory–motor interactions in music perception and production. Nature Reviews Neuroscience 8(7): 547–558.CrossRefGoogle Scholar
Zhang, D. X., Li, L., Kelly, J. B. and Wu, S. H. 1998. GABAergic projections from the lateral lemniscus to the inferior colliculus of the rat. Hearing Research 117(1): 1–12.CrossRefGoogle ScholarPubMed
Zhang, H. and Kelly, J. B. 2006. Responses of neurons in the rat's ventral nucleus of the lateral lemniscus to amplitude-modulated tones. Journal of Neurophysiology 96(6): 2905–2914.CrossRefGoogle ScholarPubMed
Zhang, S. and Oertel, D. 1993. Giant cells of the dorsal cochlear nucleus of mice: intracellular recordings in slices. Journal of Neurophysiology 69(5): 1398–1408.Google ScholarPubMed
Zhao, H. B. and Liang, Z. A. 1995. Processing of modulation frequency in the dorsal cochlear nucleus of the guinea pig: amplitude modulated tones. Hearing Research 82(2): 244–256.CrossRefGoogle ScholarPubMed
Zhao, M. and Wu, S. H. 2001. Morphology and physiology of neurons in the ventral nucleus of the lateral lemniscus in rat brain slices. Journal of Comparative Neurology 433(2): 255–271.Google ScholarPubMed
Zhou, N., Huang, J., Chen, X. and Xu, L. 2013. Relationship between tone perception and production in prelingually deafened children with cochlear implants. Otology & Neurotology 34: 499–506.CrossRefGoogle ScholarPubMed
Zschau, C. 2008. Einfluß von Lautstärke und Modulationstiefe auf die Periodizitätsverarbeitung im Colliculus inferior der Mongolischen Wüstenrennmaus (Meriones unguiculatus). Thesis, Darmstadt: TU-Darmstadt.
Zwicker, E. and Feldtkeller, R. 1967. Das Ohr als Nachrichtenempfänger. Stuttgart: S. Hirzel Verlag.Google Scholar
Zwicker, E., Flottorp, G. and Stevens, S. 1957. Critical band width in loudness summation. Journal of the Acoustical Society of America 29: 548–557.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Gerald D. Langner, Technische Universität, Darmstadt, Germany
  • Assisted by Christina Benson
  • Book: The Neural Code of Pitch and Harmony
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139050852.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Gerald D. Langner, Technische Universität, Darmstadt, Germany
  • Assisted by Christina Benson
  • Book: The Neural Code of Pitch and Harmony
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139050852.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Gerald D. Langner, Technische Universität, Darmstadt, Germany
  • Assisted by Christina Benson
  • Book: The Neural Code of Pitch and Harmony
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139050852.015
Available formats
×