Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-08-01T06:51:49.759Z Has data issue: false hasContentIssue false

11 - Potential therapies to limit obesity

Published online by Cambridge University Press:  15 September 2009

Jason C. G. Halford
Affiliation:
School of Psychology, Eleanor Rathbone Building, Bedford Street, South University of Liverpool, Liverpool, L69 7ZA, UK
Jenni Harvey
Affiliation:
University of Dundee
Dominic J. Withers
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

The chapters within this book have detailed various aspects of the neurobiology of weight control. These include the genetic factors which determined the function of the body's energy regulation and the central mechanisms responsible for maintaining the body's energy balance. Particular focus has been placed on central targets such as the melanocortin and endogenous opioid systems. These systems represent two factors which control food intake: energy balance regulation and pleasure/reward. It is the metabolic demand for energy and the pleasure derived from eating palatable foods which determine when, what and how much we eat. Other chapters have dealt with peripheral generated signals such as ghrelin, leptin and insulin and their role in appetite and energy regulation. Such mechanisms provide episodic meal-by-meal signals of food consumption and the tonic signals of energy storage to the CNS. Organs such as the gut, the pancreas and adipose tissue act as both detectors and effectors in the organism energy regulation system. This diverse peripheral input allows the organism to constantly monitor its current energy status. In turn the CNS does not only adjust the expression of feeding behavior, as the last chapter shows the CNS also exerts control over the storage of energy.

Given the complexity of these systems underpinning energy regulation (episodic and tonic, peripheral and central) it may appear surprising that the state of obesity exists. However, despite the collective action of these many systems it seems many individuals experience great difficulty controlling their own body weight.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackroff, K. & Sclafani, A. (1996). Effects of the lipase inhibitor orlistat on intake and preference for dietary fats in rats. Am. J. Physiol. 27, R48–54.Google Scholar
Anderson, J. W., Greenway, F. L., Fujioka, K., Gadde, K. M., McKenney, J. & O'Neil, P. M. (2002). Buproprion SR enhances weight loss: A 48-week double blind, placebo-controlled trial. Obes. Res. 10, 633–41.CrossRefGoogle Scholar
Baggiano, M. M., Chadler, P. C., Oswald, K. D., Rodgers, R. J., Blundell, J. E. & Ishii, Y. (2005). PYY3-36 as an anti-obesity drug target. Obes. Rev. 6, 307–22.CrossRefGoogle Scholar
Barkeling, B., Elfhag, K., Rooth, P. & Rössner, S. (2003). Short term effects of sibutramine (Reductil TM) on appetite and eating behaviour and the long term therapeutic outcome. Int. J. Obes. 27, 693–700.CrossRefGoogle Scholar
Batterham, R. L. & Bloom, S. R. (2003). The gut hormone peptide YY regulated appetite. Ann. N.Y. Acad. Sci. 994, 162–8.CrossRefGoogle Scholar
Batterham, R. L., Cowley, M. A., Small, C. J.et al. (2002). Gut hormone PYY3–36 physiologically inhibits food intake. Nature 418, 650–4.CrossRefGoogle Scholar
Batterham, R. L., Cohen, M. A., Ellis, S. M.et al. (2003). Inhibition of food intake in obese subjects by Peptide YY3-36. N. Engl. J. Med. 349, 914–18.CrossRefGoogle ScholarPubMed
Bjenning, C., Whelen, K., Gonzalez, L., Thomsen, W., Saldana, H. & Espitia, S. (2004). Increased sensitivity in female obesity-prone rats; the weight loss effects of APD356, a selective 5-HT2c agonist. Obes. Res. 12, A140.Google Scholar
Blonde, L., Zhang, B., Mac, S., Poon, T., Taylor, K. & Kim, D. (2005). Progressive reductions in body weight with 82 weeks of extenatide treatment in overweight patients with type 2 diabetes. Obes. Res. 13, A102–OR.Google Scholar
Blundell, J. E. (1977). Is there a role for serotonin (5-hydroxytryptamine) in feeding? Int. J. Obes. 1, 15–42.Google Scholar
Blundell, J. E. & Halford, J. C. G. (1995). Pharmacological aspects of obesity treatment: towards the 21st century. Int. J. Obes. 19, 51–5.Google ScholarPubMed
Blundell, J. E. & Halford, J. C. G. (1998). Serotonin and appetite regulation: implications for the pharmacological treatment of Obesity. CNS Drugs 9, 473–95.CrossRefGoogle Scholar
Bojanowska, E. (2005). Physiology and pathophysiology of glucagon-like peptide 1 (GLP-1): The role of GLP-1 in the pathogenesis of diabetes mellitus, obesity, and stress. Med. Sci. Monit. 11, RA271–8.Google Scholar
Buse, J. B., Weyer, C. & Maggs, D. G. (2002). Amylin replacement with pramlintide in type 1 and type 2 diabetes mellitus: a physiological approach to overcome barriers with insulin therapy. Clin. Diabetes 20, 137–44.CrossRefGoogle Scholar
Chapelot, D., Marmonier, C., Thomas, F. & Hanotin, C. (2000). Modalities of the food intake-reducing effect of sibutramine in humans. Physiol. Behav. 68, 299–308.CrossRefGoogle ScholarPubMed
Chapman, I., Parker, B., Doran, S.et al. (2005). Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes. Diabetologia 48, 838–48.CrossRefGoogle ScholarPubMed
Cowen, P. J., Sargent, P. A., Williams, C., Goodall, E. M. & Olikov, A. B. (1995). Human Psychopharmacol. 10, 385–91.CrossRef
DeFronzo, R. A., Kim, D. D., Ratner, R. E., Fineman, M. S., Han, J. & Baron, A. D. (2005). Effects of extenatide (exendin-4) on glycemic control over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 28, 1083–91.CrossRefGoogle ScholarPubMed
Degen, L., Oesch, S., Casanva, M.et al. (2005). Effect of peptide PYY3–36 on food intake in humans. Gastroenterology. 129, 1430–6.CrossRefGoogle ScholarPubMed
Després, J- P., Golay, A. & Sjöström, L. (2005). Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N. Engl. J. Med. 353, 2121–34.CrossRefGoogle ScholarPubMed
Edwards, C. M. B., Stanley, S. A., Davis, R., et al. (2001). Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am. J. Physiol. Endocr. Metab. 291, E155–61.CrossRefGoogle Scholar
Flint, A., Raben, A., Astrup, A. & Holst, J. (1998). Glucagon like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clin. Invest. 101, 515–20.CrossRefGoogle ScholarPubMed
Flint, A., Raben, A.,. Ersbǿll, A. K., Holst, J. J. & Astrup, A. A. (2001). The effect of physiological levels of glucagon like peptide 1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int. J. Obes. Relat. Metab. Disord. 25, 781–92.CrossRefGoogle ScholarPubMed
Frost, G. S., Brynes, A. E., Dhillo, W. S., Bloom, S. R. & McBurney, M. I. (2003). The effects of fibre enrichment of pasta and fat content on gastric emptying, GLP-1, glucose, and insulin responses to a meal. Eur. J. Clin. Nutr. 57, 293–8.CrossRefGoogle Scholar
Goudie, A. J., Cooper, G. D. & Halford, J. C. G. (2005). Antipsychotic-induced weight gain. Diabetes Obes. Metab. 7, 478–87.CrossRefGoogle ScholarPubMed
Guerciolini, R. (1997). Mode of action of orlistat. Int. J. Obes. 21, s12–23.Google ScholarPubMed
Gutzwiller, J. P., Goke, B., Drewe, J.et al. (1999a). Glucagon-like peptide-1: a potent regulator of food intake in humans. Gut 44, 81–6.CrossRefGoogle Scholar
Gutzwiller, J. P., Drewe, J., Goke, B.et al. (1999b). Glucagon like peptide promotes satiety and reduced food intake in patients with diabetes mellitus. Am. J. Physiol. 276, R1541–5.Google Scholar
Hagan, M. M. (2002). Peptide YY: a key mediator of orexigenic behaviour. Peptides 23, 377–82.CrossRefGoogle Scholar
Halford, J. C. G. (2004). Clinical pharmacotherapy for obesity: current drugs and those in advanced development. Curr. Drug Targets. 5, 637–46.CrossRefGoogle ScholarPubMed
Halford, J. C. G., Cooper, G. D., Dovey, T. M., Ishii, Y., Rodgers, R. J. & Blundell, J. E. (2003). Pharmacological approaches to obesity treatment, current medical chemistry. Central Nervous System Agents, 3, 283–310.CrossRefGoogle Scholar
Halford, J. C. G., Dovey, T. M. & Cooper, G. D. (2004). Pharmacology of human appetite expression. Curr. Drug Targets 5, 221–40.CrossRefGoogle ScholarPubMed
Halford, J. C. G., Harrold, J. E., Lawton, C. L. & Blundell, J. E. (2005). Serotonin (5-HT) drugs: effects on appetite expression and use for treatment of obesity. Curr. Drug Targets 6, 201–13.CrossRefGoogle ScholarPubMed
Hansen, D. L., Toubro, S., Stock, M. J., Macdonald, I. A. & Astrup, A. (1999). The effect of sibutramine on energy expenditure and appetite during chronic treatment without dietary restriction. Int. J. Obes. 23, 10 160–24.CrossRefGoogle ScholarPubMed
Harrold, J. A. (2004). Hypothalamic control of energy balance. Curr. Drug Targets 5, 207–19.CrossRefGoogle ScholarPubMed
Hauptman, J. B., Jeunet, F. S. & Hartmann, S. (1992). Initial studies in humans with the novel gastrointestinal lipase inhibitor Ro 18-0647 (tetrahydrolipstatin). Am. J. Clin. Nutr. 55, s309–22.CrossRefGoogle Scholar
Heal, D. J., Aspely, A., Prow, M. R., Jackson, H. C., Martin, K. F. & Cheetham, S. C. (1998). Sibutramine: a novel anti-obesity drug. A review of the pharmacological evidence to differentiate from d-amphetamine and d-fenfluramine. Int. J. Obes. Relat. Metab. Disord. 22, s18–28.Google ScholarPubMed
Heffernan, M., Summers, R. J., Thorburn, A.et al. (2001). The effects of human GH and its lipolytic fragment (AOD9604) on lipid metabolism following chronic treatment in obese mice and beta(3)-AR knock-out mice. Endocrinology 142, 5182–9.CrossRefGoogle ScholarPubMed
Herd, C., Wittert, G., Caterson, I., Proietto, J., Srauss, B. & Prins, J. (2005). The effect of AOD9604 on weight loss in obese adults: results of a randomized, double-blind, placebo-controlled, multicenter study. Obes. Res. 13 (Suppl.), 106–OR.Google Scholar
Hollander, P., Ratner, R., Fineman, M.et al. (2003). Addition of pramlintide to insulin therapy lowers HbA(1c) in conjunction with weight loss in patients with type 2 diabetes approaching glycaemic targets. Diabetes Obes. Metab. 5, 408–14.CrossRefGoogle Scholar
Hollander, P., Maggs, D., Ruggles, J. A.et al. (2004). Effect of pramlintide on weight in overweight and obese insulin treated type 2 diabetes patients. Obes. Res. 12, 661–8.CrossRefGoogle ScholarPubMed
Holst, J. J. & Gromada, J. (2004). Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am. J. Physiol. 287, E199–206.Google ScholarPubMed
Jackson, H. C., Bearham, M. C., Hutchins, L. J., Mazurkiewicz, S. E., Needham, A. M. & Heal, D. J. (1997). Investigation of the mechanisms underlying the hypophagic effects of the 5-HT and nor-adrenaline reuptake inhibitor sibutramine in the rat. Br. J. Pharmacol. 121, 613–18.CrossRefGoogle Scholar
Jain, A. K., Kaplan, R. A., Gadde, K. M.et al. (2002). Buproprion SR vs. placebo for weight loss in obese patients with depressive symptoms. Obes. Res. 10, 1049–56.CrossRefGoogle Scholar
Kastin, A. J., Akerstrom, V. & Pan, W. (2002). Interaction of glucagon-like petide-1 (GLP-1) with the blood-brain barrier. J. Mol. Neurosci. 18, 7–14.CrossRefGoogle Scholar
Kendall, D. M, Riddle, M. C., Rosenstock, J.et al. (2005). Effects of extenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 28, 1083–91.CrossRefGoogle Scholar
King, P. J. (2005). The hypothalamus and obesity. Curr. Drug Targets 6, 225–40.CrossRefGoogle ScholarPubMed
Kirkham, T. C. (2005). Endocannabinoids in the regulation of appetite and body weight. Behav. Pharmacol. 16, 297–313.CrossRefGoogle ScholarPubMed
Koch, J. E. (2001). Delta(9)-THC stimulates food intake in Lewis rats – effects on chow, high-fat and sweet high-fat diets. Pharmacol. Biochem. Behav. 68, 539–43.CrossRefGoogle ScholarPubMed
Kong, M-F., Chapman, I., Goble, A.et al. (1999). Effects of oral fructose and glucose on plasma GLP-1 and appetite in normal subjects. Peptides 20, 545–51.CrossRefGoogle ScholarPubMed
Kopelman, P., Bryson, A. M. & Palmer, R. M. F. (2004). Efficacy and tolerability of ATL-962, a lipase inhibitor in obese patients. Int. J. Obes. 28, AO2–003.Google Scholar
Lavin, J. H., Wittert, G. A., Andrews, J.et al. (1998). Interaction of insulin, glucagon-like peptide 1, gastric inhibitory polypeptide, and appetite in response to intraduodenal carbohydrate. Am. J. Clin. Nutr. 68, 591–8.CrossRefGoogle ScholarPubMed
Leibowitz, S. F. & Wortley, K. E. (2004). Hypothalamic control of energy balance: different peptides, different functions. Peptides 25, 473–504.CrossRefGoogle ScholarPubMed
Li, Z., Maglione, M., Tu, W.et al. (2005). Meta-analysis: pharmacologic treatments of obesity. Ann. Intern. Med. 142, 532–46.CrossRefGoogle ScholarPubMed
Lush, C., Chen, K., Hompesch, M., Tropin, B., Lacerte, C. & Burns, C. (2005). A phase 1 study to evaluate the safety, tolerability, and pharmacokinetics of rising doses of AC162352 (synthetic human PYY3–36) in lean and obese subjects. Obes. Rev. 6 (Suppl. 1), o051.Google Scholar
Lutz, T. A. (2005). Pancreatic amylin as a centrally acting satiating hormone. Curr. Drug Targets 6, 181–9.Google ScholarPubMed
Lutz, T. A., Mollet, A., Rushing, P. A. & Riediger, T. (2001). The anorectic effect of a chronic peripheral infusion of amylin is abolished in area postrema/ nucleus of the solitary tract (AP/NTS) lesioned rats. Int. J. Obes. 25, 1005–11.CrossRefGoogle ScholarPubMed
Näslund, E., Gutniak, M., Skogar, S., Rössner, S. & Hellström, P. M. (1998). Glucagon-like peptide 1 increase the period of postprandial satiety and slows gastric emptying in obese men. Am. J. Clin. Nutr. 68, 525–30.CrossRefGoogle Scholar
Näslund, E., Barkeling, B., King, N.et al. (1999). Energy intake and appetite are suppressed by glucagon like peptide 1 (GLP-1) in obese men. Int. J. Obes. 23, 304–11.CrossRefGoogle Scholar
Näslund, E., King, N., Mansten, S.et al. (2004). Prandial subcutaneous injections of glucagon like peptide 1 cause weight loss in obese human subjects. Br. J. Nutr. 91, 439–46.CrossRefGoogle ScholarPubMed
Ng, F. M., Sun, J., Shama, L., Libinaka, R., Jiang, W. J. & Gianello, R. (2000). Metabolic studies of a synthetic lipolytic domain (A)D9604) of human growth hormone. Horm. Res. 53, 274–8.Google Scholar
Nielsen, L. L., Young, A. A. & Parkes, D. G. (2004). Pharmacology of extenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes. Reg. Peptides 117, 766–77.CrossRefGoogle ScholarPubMed
Ongaa, T., Zabieski, R. & Kato, S. (2002). Multiple regulation of peptide YY in the digestive tract. Peptide 23, 279–90.CrossRefGoogle Scholar
Parkes, D., Jodka, C., Smith, P.et al. (2001). Pharmacokinetic actions of exendin-4 in the rat: comparison with glucagon like peptide-1. Drug Dev. Res. 53, 260–7.CrossRefGoogle Scholar
Piomelli, D. (2005). The endocannabiniod system: a drug discovery perspective. Curr. Opin. Invest. Drugs 6, 272–9.Google Scholar
Pittner, R. A., Moore, C. X., Bhavsar, S. P., Gedulin, B. R.Smith, P. A. & Jodka, C. M. (2004). Effects of PYY[3-36] in rodent models of diabetes and obesity. Int. J. Obes. 28, 963–71.CrossRefGoogle ScholarPubMed
Reda, T. K., Geliebter, A. & Pi-Sunyer, F. X. (2002). Amylin, food intake and obesity. Obes. Res. 10, 1087–91.CrossRefGoogle ScholarPubMed
Renshaw, D. & Batterham, R. L. (2005). Peptide YY: a potential therapy for obesity. Curr. Drug Targets 6, 171–8.CrossRefGoogle ScholarPubMed
Rolls, B. J., Shide, D. J., Thorwart, M. L. & Ulbrecht, J. S. (1998). Sibutramine reduces food intake in non-dieting women with obesity. Obes. Res. 6, 1–11.CrossRefGoogle ScholarPubMed
Rushing, P. A. (2003). Central amylin signalling and the regulation of energy homeostasis. Curr. Pharmaceut. Design 9, 819–25.CrossRefGoogle Scholar
Rushing, P. A., Hagan, M. M., Seeley, R. J., Lutz, T. A. & Woods, S. C. (2000). Amylin: a novel action in the brain to reduced body weight. Endocrinology 141, 850–3.CrossRefGoogle Scholar
Sargent, P. A., Sharpley, A. L. & Williams, C. (1997). 5-HT2C activation decreases appetite and body weight in obese subjects. Psychopharmacology 133, 309–12.CrossRefGoogle ScholarPubMed
Schwizer, A., Asal, K., Kreiss, C., Mettraus, C., Borovicka, J. & Remy, B. (1997). Role of lipase in the regulation of upper gastrointestinal function in humans. Am. J. Physiol. 273, G612–20.Google ScholarPubMed
Smith, B. M., Smith, J. M., Tsai, J. H., Schultz, J. A., Gilson, C. A. & Estrada, S. A. (2005b). Discovery and SAR of new benzazapines and potent and selective 5-HT2C receptor agonist for the treatment of obesity. Bioorg. Med. Chem. Lett. 12, 1467–71.CrossRefGoogle Scholar
Smith, S., Anderson, J., Frank, A., Fujioka, K., Klein, S. & Perez, J. (2005a). The effects of APD356, a selective 5-HT2C agonist, on weight loss in a 4 week study in healthy obese patients. Obes. Res. 13, Abstr. 101–OR.Google Scholar
Stock, M. J. (1997). Sibutramine: a review of the pharmacology of a novel anti-obesity agent. Int. J. Obes. 21, s25–9.Google ScholarPubMed
Szayna, M., Doyle, M. E., Betkey, J. A.et al. (2000). Exendin-4 decelerates food intake, weight gain, and fat deposition in Zucker rats. Endocrinology 141, 1936–41.CrossRefGoogle ScholarPubMed
Thomsen, C., Storm, H., Holst, J. J. & Hermansen, K. (2003). Differential effects of saturated and monounsaturated fats on postprandial lipemia and glucagon-like peptide 1 responses in patients with type 2 diabetes. Am. J. Clin. Nutr. 77, 605–11.CrossRefGoogle ScholarPubMed
Torgerson, J. S., Hauptman, J., Boldrin, M. N. & Sjöström, L. (2004). XENical in the prevention of diabetes in obese subjects (XENDOS) study. A randomised study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care 27, 155–61.CrossRefGoogle Scholar
Tschöp, M., Castaneda, T. R., Joost, H. G.et al. (2004). Does gut hormone PYY3-36 decrease food intake in rodents? Nature 430, 1 following 165.CrossRefGoogle ScholarPubMed
Turton, M. D., Oshea, D., Gunn, I., Beak, S. A., Edwards, C. M. B. & Meeran, K. (1996). A role for glucagon like peptide 1 in the central regulation of feeding. Nature 379, 69–72.CrossRefGoogle ScholarPubMed
Ullrich, A., Erdmann, J., Margraf, J. & Schusdziarra, A. (2003). Impact of carbohydrate and fat intake on weight-reducing efficacy of orlistat. Aliment. Pharmacol. Ther. 17, 1007–13.CrossRefGoogle ScholarPubMed
Gaal, L. F., Rissanen, A. M., Scheen, A. J., Ziegler, O. & Rössner, S. (2005). Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365, 1389–97.CrossRefGoogle ScholarPubMed
Verdich, A., Flint, A, Gutwzwiller, J. P.et al. (2001). A meta-analysis of the effects of glucagon-like peptide-1(7–36) amide on ad libitum energy intake in humans. J. Clin. Endocrinol. Metab. 86, 4382–9.Google ScholarPubMed
Vickers, S. P. & Kennet, G. A. (2005). Cannabinoids and the regulation of ingestive behaviour. Curr. Drug Targets 6, 215–23.CrossRefGoogle ScholarPubMed
Walsh, A. E., Smith, K. A. & Oldman, A. D. (1994). m-Chlorophenylpiperazine decrease food intake in a test meal. Psychopharmacology 116, 120–2.CrossRefGoogle Scholar
Weyer, C., Maggs, D. G., Young, A. A. & Kolterman, O. G. (2001). Amylin replacement with pramlintide as an adjunct to insulin therapy in type 1 and type 2 diabetes mellitus: a physiological approach towards improved metabolic control. Curr. Pharmaceut. Design 7, 1353–73.CrossRefGoogle Scholar
Weyer, C., Chapman, I., Parker, B., Doran, S., Feinle-Bisset, C. & Wishart, J. (2005). Pramlintide reduced ad-libitum food intake and meal duration independently of ghrelin, PYY, CKK, and GLP-1: further evidence for a physiological role of amylin agonism in human appetite control. Obes. Rev. 6, Abstr. o052.Google Scholar
Wilding, J. (2003). AOD-9604 metabolic. Curr. Opin. Invest. Drugs 5, 436–40.Google Scholar
Williams, C. M. & Kirkham, T. C. (2002). Reversal of Delta(9)-THC hyperphagia by SR141716 and naloxone but not dexfenfluramine. Pharmacol. Biochem. Behav. 71, 333–40.CrossRefGoogle Scholar
Williams, G., Cai, X. J., Elliott, J. C. & Harrold, J. A. (2004). Anabolic neuropeptides. Physiol. Behav. 81, 211–22.CrossRefGoogle ScholarPubMed
Zhi, J., Melia, A. T., Eggers, H., Joly, R. & Patel, I. H. (1995). Review of limited systematic absorption orlistat, a lipase inhibitor, in healthy human volunteers. J. Clin. Pharmacol. 35, 1103–8.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Potential therapies to limit obesity
    • By Jason C. G. Halford, School of Psychology, Eleanor Rathbone Building, Bedford Street, South University of Liverpool, Liverpool, L69 7ZA, UK
  • Edited by Jenni Harvey, University of Dundee, Dominic J. Withers, Imperial College of Science, Technology and Medicine, London
  • Book: Neurobiology of Obesity
  • Online publication: 15 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541643.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Potential therapies to limit obesity
    • By Jason C. G. Halford, School of Psychology, Eleanor Rathbone Building, Bedford Street, South University of Liverpool, Liverpool, L69 7ZA, UK
  • Edited by Jenni Harvey, University of Dundee, Dominic J. Withers, Imperial College of Science, Technology and Medicine, London
  • Book: Neurobiology of Obesity
  • Online publication: 15 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541643.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Potential therapies to limit obesity
    • By Jason C. G. Halford, School of Psychology, Eleanor Rathbone Building, Bedford Street, South University of Liverpool, Liverpool, L69 7ZA, UK
  • Edited by Jenni Harvey, University of Dundee, Dominic J. Withers, Imperial College of Science, Technology and Medicine, London
  • Book: Neurobiology of Obesity
  • Online publication: 15 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541643.012
Available formats
×