Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T05:19:33.245Z Has data issue: false hasContentIssue false

24 - Developmental models and hypothesis-driven early interventions in schizophrenia

Published online by Cambridge University Press:  04 August 2010

Matcheri S. Keshavan
Affiliation:
University of Pittsburgh School of Medicine, Pittsburgh and Wayne State University School of Medicine, Detroit, USA
Barbara A. Cornblatt
Affiliation:
Recognition and Prevention Program, Lake Success, New York, USA
Matcheri S. Keshavan
Affiliation:
University of Pittsburgh
James L. Kennedy
Affiliation:
Clarke Institute of Psychiatry, Toronto
Robin M. Murray
Affiliation:
Institute of Psychiatry, London
Get access

Summary

During recent years, three types of pathophysiological models have been proposed, those that posit altered pre- or perinatal brain development, those proposing peri-adolescent developmental abnormalities, and those that argue for neuronal degenerative processes after illness onset. This chapter reviews the lines of evidence from clinical observations and neurobiological research leading to the three seemingly conflicting models. It outlines an alternative model that potentially integrates all three. The chapter discusses the possible remediative and preventive treatment options suggested by the current pathophysiological models. It reviews the data that have emerged from the prevention programs generated by these models. The chapter is concluded by describing the way in which the unifying model newly proposed provides an integrated theoretical foundation for prevention and early intervention in schizophrenia. Evidence-based demonstration of cost effectiveness of such interventions is critically needed if this field of research is to sustain and solidify this paradigm shift.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbarian, S., Bunney, W. E., Potkin, S. G.et al. (1993). Altered distribution of nicotamine-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry 50: 169–177CrossRefGoogle ScholarPubMed
Akbarian, S., Sucher, N., Bradley, D.et al. (1996). Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J Neurosci 16: 19–30CrossRefGoogle ScholarPubMed
Andreasen, N., Rezai, K., Alliger, R.et al. (1992). Hypofrontality in neuroleptic-naive patients with chronic schizophrenia. Assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Arch Gen Psychiatry 49: 943–958CrossRefGoogle ScholarPubMed
Arnt, J., Skarsfeldt, T. (1998). Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology 18: 63–101CrossRefGoogle Scholar
Bechdolf, , A., Wagner, M. (2003). Cognitive behavioral therapy in the prepsychotic phase: an exploratory study. Schizophr Res 60(Suppl.): 319CrossRefGoogle Scholar
Behar, T. N., Scott, C. A., Greene, C. L.et al. (1999). Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci 19: 4449–4461CrossRefGoogle ScholarPubMed
Berger, G. E., Profitt, T. M., McConchie, M. A.et al. (2004). Ethyl-eicosapentaenoic acid (E-EPA) supplementation in early psychosis, Schizophr Res 67: 7
Cannon, T. D., Huttunen, M. O., Dahlstrom, M.et al. (2002). Antipsychotic drug treatment in the prodromal phase of schizophrenia. Am J Psychiatry 159: 1230–1232CrossRefGoogle ScholarPubMed
Christodolou, G. N. (1991). Prevention of psychopathology with early interventions. Psychother Psychosom 55: 201–207CrossRefGoogle Scholar
Chugani, H. T., Phelps, M. E., Mazziotta, J. C., (1987). Positron-emission tomography study of human brain functional development. Ann Neurol 22: 487–497CrossRefGoogle ScholarPubMed
Cornblatt, B. A., Malhotra, A. K. (2001). Impaired attention as an endophenotype for molecular genetic studies of schizophrenia. Am J Med Genet 105: 11–153.0.CO;2-G>CrossRefGoogle ScholarPubMed
Cornblatt, B., Lencz, T., Correll, C., Author, A., Smith, C. (2002). Treating the prodrome naturalistic findings from the RAP Program. Acta Psychiatr Scand 106(S413): 44Google Scholar
Cornblatt, B. A., Lencz, T., Smith, C. W.et al. (2003). The schizophrenia program revisited: a neurodevelopmental perspective. Schizophr Bull 29: 633–651CrossRefGoogle ScholarPubMed
Coyle, J. T. (1996). The glutamatergic dysfunction hypothesis for schizophrenia. Harvard Rev Psychiatry 3: 241–253CrossRefGoogle Scholar
Cuijpers, P. (2003). Examining the effects of prevention programs on the incidence of new cases of mental disorders: the lack of statistical power. Am J Psychiatry 160: 1385–1391CrossRefGoogle ScholarPubMed
DeLisi, L. E. (1995). A prospective follow-up study of brain morphology and cognition in first-episode schizophrenic patients: preliminary findings. Biol Psychiatry 38: 349–360CrossRef
DeLisi, L. E.DeLisi, L. E. (1997). Is schizophrenia a lifetime disorder of brain plasticity, growth, and aging?Schizophr Res 23: 119–129CrossRefGoogle ScholarPubMed
Deutsch, S. I., Rosse, R. B., Schwartz, B. L., Mastropaolo, J. (2001). A revised excitotoxic hypothesis of schizophrenia: therapeutic implications. Clin Neuropharmacol 24: 43–49CrossRefGoogle ScholarPubMed
Done, D. J., Crow, T. J., Johnstone, E. C., Sacker, A. (1994). Childhood antecedents of schizophrenia and affective illness: social adjustment at ages 7 and 11. Br Med J 309: 699–703CrossRefGoogle ScholarPubMed
Eastwood, S. L., Harrison, P. J. (1995). Decreased synaptophysin in the medical temporal lobe in schizophrenia demonstrated using immunoautoradiography. Neuroscience 69: 339–343CrossRefGoogle Scholar
Eaton, W. W., Thara, R., Federman, B., Melton, B., Liang, K. Y. (1995). Structure and course of positive and negative symptoms in schizophrenia. Arch Gen Psychiatry 52: 127–134CrossRef
Elvevag, B., Goldberg, T. E. (2000). Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol 14: 1–21CrossRefGoogle ScholarPubMed
Erlenmeyer-Kimling, L., Cornblatt, B. A. (1992). A summary of attentional findings in the New York High-risk Project. J Psychiatr Res 26: 405–426CrossRefGoogle ScholarPubMed
Erlenmeyer-Kimling, L., Squires-Wheeler, E., Hilldoff-Adamo, U. H., et al. (1995). The New York High-risk Project. Psychoses and cluster A personality disorders in offspring of schizophrenic parents at 23 years of follow-up. Arch Gen Psychiatry 52: 857–865CrossRefGoogle Scholar
Feinberg, I. (1982–83). Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence?J Psychiatr Res 17: 319–334CrossRefGoogle Scholar
Feinberg, I.Feinberg, I. (1990). Cortical pruning and the development of schizophrenia. Schizophr Bull 16: 567–570CrossRefGoogle ScholarPubMed
Fenton, W. S., McGlashan, T. H. (1994). Antecedents, symptom progression, and long-term outcome of the deficit syndrome in schizophrenia. Am J Psychiatry 151: 351–356Google Scholar
Fish, B. (1987). Infant predictors of the longitudinal course of schizophrenic development. Schizophr Bull 13: 395–409CrossRefGoogle ScholarPubMed
Garey, L. J., Ong, W. Y., Patel, T. S., et al. (1998). Reduced dendritic spines density on cerebral cortical pyramidal cells in schizophrenia. J Neurol Neurosurg Psychiatry 65: 446–453CrossRefGoogle Scholar
Glantz, L. A., Lewis, D. A. (1997). Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia: Regional and diagnostic specificity. Arch Gen Psychiatry 54: 943–952CrossRefGoogle ScholarPubMed
Goff, D. C., Coyle, J. T. (2001). The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 158: 1367–1377CrossRefGoogle ScholarPubMed
Grace, A. (1993). Cortical regulation of subcortical dopamine systems and its possible relevance to schizophrenia. J Neur Transm (Gen Sect) 91: 111–134CrossRefGoogle Scholar
Haas, G., Sweeney, J. (1992). Premorbid and onset features of first-episode schizophrenia. Schizophr Bull 18: 373–386CrossRefGoogle ScholarPubMed
Hafner, H., Maurer, K., Loffler, W., Riecher-Rossler, A. (1993). The influence of age and sex on the early course of schizophrenia. Br J Psychiatry 162: 80–86CrossRefGoogle ScholarPubMed
Heresco-Levy, U., Javitt, D. (1998). The role of N-methyl-d-aspartate (NMDA) receptor-mediated neurotransmission in the pathophysiology and therapeutics of psychiatric syndromes. Eur Neuropsychopharmacol 8: 141–152CrossRefGoogle ScholarPubMed
Hoffman, R., McGlashan, T. (1997). Synaptic elimination, neurodevelopment, and the mechanism of hallucinated “voices” in schizophrenia. Am J Psychiatry 154: 1683–1689CrossRefGoogle Scholar
Jaskiw, G. E., Juliano, D. M., Goldberg, ,T. E., et al. (1994). Cerebral ventricular enlargement in schizophreniform disorder does not progress. A seven year follow-up study. Schizophr Res 14: 23–28CrossRefGoogle Scholar
Javitt, D., Zukin, S. (1991). Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148: 1301–1308Google ScholarPubMed
Jernigan, T. L., Tallal, P. (1990). Late childhood changes in brain morphology observable with MRI. Dev Med Child Neurol 32: 379–385CrossRefGoogle ScholarPubMed
Johnstone, E. C., Russell, K. D., Harrison, L. K., Lawrie, S. M. J. (2003). The Edinburgh High Risk Study: current status and future prospects. World Psychiatry 2: 45–49Google ScholarPubMed
Jones, P., Cannon, M. (1998). The new epidemiology of schizophrenia. Psychiatr Clin North Am 21: 1–25CrossRefGoogle ScholarPubMed
Keshavan, M., Anderson, S., Pettegrew, J. (1994). Is schizophrenia due to excesive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J Psychiatr Res 28: 239–265CrossRefGoogle Scholar
Keshavan, M. S.Development, disease and degeneration in schizophrenia: a unitary pathophysiological model. (1999). J Psychiatr Res 33: 513–521CrossRefGoogle ScholarPubMed
Keshavan, M. S., Hogarty, G. E. (1999). Brain maturational processes and delayed onset in schizophrenia. Dev Psychopathol 11: 525–543CrossRefGoogle Scholar
Keshavan, M. S., Reynolds, C. F., Miewald, M. J.et al. (1998a). Delta sleep deficit in schizophrenia: evidence from automated analyses of sleep data. Arch Gen Psychiatry 55: 443–448CrossRefGoogle Scholar
Keshavan, M., Haas, G., Kahn, C.et al. (1998b). Superior temporal gyrus and the course of early schizophrenia: progressive, static, or reversible?J Psychiatr Res 32: 60–65CrossRefGoogle Scholar
Keshavan, M. S., Stanley, J. A., Montrose, D. M., Minshew, N. J., Pettegrew, J. W. (2003). Prefrontal membrane phospholipid metabolism of child and adolescent offspring at risk for schizophrenia or schizoaffective disorder: an in vivo (31)P MRS study. Mol Psychiatry 8: 316–323CrossRefGoogle Scholar
Kim, J., Kornhuber, H., Schmid-Burgk, W., Holzmuller, B. (1980). Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 20: 379–382CrossRefGoogle Scholar
Kovelman, J., Scheibel, A. (1984). A neurohistological correlate of schizophrenia. Biol Psychiatry 19: 1601–1621Google ScholarPubMed
Kraepelin, E. (1919). Dementia Praecox and Paraphrenia. Edinburgh: E. and S. Livingstone
Lieberman, J. (1993). Prediction of outcome in first-episode schizophrenia. J Clin Psychiatry 54(Suppl.): 13–17Google ScholarPubMed
Lieberman, J., Koreen, A., Chakos, M.et al. (1996). Factors influencing treatment response and outcome of first-episode schizophrenia: implications for understanding the pathophysiology of schizophrenia. J Clin Psychiatry 9: 5–9Google Scholar
Lieberman, J., Sheitman, B., Kinon, B. (1997). Neurochemical sensitization in the pathophysiology of schiozphrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology 17: 205–229CrossRefGoogle ScholarPubMed
Lieberman, J., Chakos, M., Wu, H.et al. (2001). Longitudinal study of brain morphology in first episode schizophrenia. Biol Psychiatry 49: 487–499CrossRefGoogle ScholarPubMed
Loebel, A. D., Liberman, J. A., Alvir, J. M. J. (1992). Duration of psychosis and outcome in first-episode schiozphrenia. Am J Psychiatry 149: 1183–1188Google Scholar
Mathalon, D. H., Ford, J. M., Rosenbloom, M., Pfefferbaum, A. (2000). P300 reduction and prolongation with illness duration in schizophrenia. Biol Psychiatry 47: 413–427CrossRefGoogle Scholar
McGlashan, T., Fenton, W. (1993). Subtype progression and pathophysiologic deterioration in early schizophrenia. Schizophr Bull 19: 71–84CrossRefGoogle ScholarPubMed
McGlashan, T. H., Hoffman, R. E. (2000). Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 57: 637–648CrossRefGoogle ScholarPubMed
McGlashan, T. H., Zipursky, R. B., Perkins, D.et al. (2003a). The PRIME North America randomized double-blind clinical trial of olanzapine versus placebo in patients at risk of being prodromally symptomatic for psychosis. I. Study rationale and design. Schizophr Res 61: 7–18CrossRefGoogle Scholar
McGlashan, T. H., Zipursky, R. B., Perkins, D.et al.McGlashan, T. H., Zipursky, R. B., Perkins, D.et al. (2003b). Olanzapine versus placebo treatment of the schizophrenia prodrome: one year results. Schizophr Res 60(Suppl.): 295CrossRefGoogle Scholar
McGorry, P. D., Yung, A. R., Phillips, L. J.et al. (2002). Randomized controlled trial of interventions designed to reduce the risk of progression to first-episode psychosis in a clinical sample with subthreshold symptoms. Arch Gen Psychiatry 59: 921–928CrossRefGoogle Scholar
McGrath, J. (2000). Universal interventions for the primary prevention of schizophrenia. Aust N Z J Psychiatry 34(Suppl.): S58–S64CrossRefGoogle ScholarPubMed
Meltzer, H. (1994). An overview of the mechanism of action of clozapine. J Clin Psychiatry 55: 47–52Google ScholarPubMed
Mednick, S. A., Machon, R. A., Huttunen, M. O. (1988). Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 45: 171–176CrossRefGoogle Scholar
Moghaddam, B. (2002). Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol Psychiatry 51: 775–787CrossRefGoogle ScholarPubMed
Morrison, A. P., Bentall, R. P., French, P.et al. (2002). Randomised controlled trial of early detection and cognitive therapy for preventing transition to psychosis in high-risk individuals. Study design and interim analysis of transition rate and psychological risk factors. Br J Psychiatry Suppl 43: S78–S84CrossRefGoogle ScholarPubMed
Mrazek, P. J., Haggerty R. J. (1994). Reducing Risks for Mental Disorders: Frontiers for Preventive Intervention Research. Washington, DC: National Academy Press
Murray, R. M., Lewis, S. W. (1987). Is schizophrenia a neurodevelopmental disorder? [Editorial] Br Med J (Clin Res Ed) 295: 681–682CrossRefGoogle ScholarPubMed
Olney, J., Farber, N. (1995). Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52: 998–1007CrossRef
Pettegrew, J. W., Keshavan, M. S., Panchalingam, K., et al. (1991). Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. Arch Gen Psychiatry 48: 563–568CrossRef
Pettegrew, J. W., McClure, R., Keshavan, M., et al. (1997). 31P magnetic resonance spectroscopy studies of developing brain. In Neurodevelopment and Adult Psychopathology, ed. M. Keshavan, R. Murray. New York: Cambridge University Press, pp. 71–92
Ruhrmann, S., Wagner, M., Wieneke, A., et al. (2002). Intervention in the initial phase of psychosis. Acta Psychiatr Scand 106(S413): 19Google Scholar
Scott, L., Kruse, M. S., Forssberg, H.et al. (2002). Selective up-regulation of dopamine D1 receptors in dendritic spines by NMDA receptor activation. Proc Natl Acad Sci USA 99: 1661–1664CrossRefGoogle ScholarPubMed
Selemon, J., Rajkowska, G., Goldman-Rakic, P. (1995). Abnormally high neuronal density in the schizophrenic cortex. Arch Gen Psychiatry, 52: 805–818CrossRefGoogle ScholarPubMed
Susser, E. S., Lin, S. P. (1992). Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944–1945. Arch Gen Psychiatry 49: 983–988CrossRefGoogle ScholarPubMed
Tamminga, C. A. (1998). Schizophrenia and glutamatergic transmission. Crit Rev Neurobiol 12: 21–36CrossRefGoogle ScholarPubMed
Thompson, P. M., Vidal, C., Giedd, J. N.et al. (2001). Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA 98: 11650–11655CrossRefGoogle ScholarPubMed
Tsai, G., Passani, L., Slusher, B.et al. (1995). Abnormal excitatory neurotransmitter metabolism in schizophrenia brains. Arch Gen Psychiatry 52: 829–836CrossRefGoogle Scholar
Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44: 660–669CrossRefGoogle ScholarPubMed
Weinberger, D. R.Weinberger, D. R. (1995). From neuropathology to neurodevelopment. Lancet 346: 552–557CrossRefGoogle ScholarPubMed
Weinberger, D. R., McClure, R. K. (2002). Neurotoxicity, neuroplasticity, and magnetic resonance imaging morphometry: what is happening in the schizophrenic brain?Arch Gen Psychiatry 59: 553–558CrossRefGoogle ScholarPubMed
Woods, S. W., D'Souza, D. C., Wexler, B. E., Hoffman, R. E., McGlashan, T. H. (2002). Novel early interventions for prodromal states. Acta Psychiatr Scand 106(S413): 12Google Scholar
Woods, S. W., Breier, A., Zipursky, R. B.et al. (2003). Randomized trial of olanzapine versus placebo in the symptomatic acute treatment of the schizophrenic prodrome. Biol Psychiatry 54: 453–464CrossRefGoogle ScholarPubMed
Wyatt, R. (1991). Neuroleptics and the natural course of schizophrenia. Schizophr Bull 17: 325–351CrossRefGoogle ScholarPubMed
Zipursky, R. O. (1992). Widespread cerebral gray matter volume deficits in schizophrenia. Arch Gen Psychiatry 49: 195–205CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×