Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T07:27:15.354Z Has data issue: false hasContentIssue false

23 - High-risk studies, brain development, and schizophrenia

Published online by Cambridge University Press:  04 August 2010

Matcheri S. Keshavan
Affiliation:
University of Pittsburgh School of Medicine, Pittsburgh and Wayne State University School of Medicine, Detroit, USA
Matcheri S. Keshavan
Affiliation:
University of Pittsburgh
James L. Kennedy
Affiliation:
Clarke Institute of Psychiatry, Toronto
Robin M. Murray
Affiliation:
Institute of Psychiatry, London
Get access

Summary

This chapter reviews the several approaches to investigate premorbid risk for schizophrenia. It presents a critical appraisal of the existing studies focusing on the populations at risk for schizophrenia, the issues surrounding study design, predictive and outcome factors identified so far, and the timing of the studies. Studies of premorbid risk, risk for schizophrenia and prospective studies have utilized genetic propensity, neurobehavioral markers, or psychopathology to identify the risk status. The chapter outlines the potential merits and disadvantages of these strategies, reviews the lessons learned from the early first high-risk (HR) studies and presents a rationale for more focused next-generation studies to examine premorbid risk. Recent advances in developmental neurobiology and neuroscience make it reasonable to expect a paradigm shift in research on schizophrenia. It is hoped that the third millennium will usher in a new generation of research studies on high-risk (HR) populations.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders, 4th edn. Washington, DC: American Psychiatric Press
Amminger, G. P., Pape, S., Rock, D., et al. (1999). Relationship between childhood behavioral disturbance and later schizophrenia in the New York High-risk Project. Am J Psychiatry 156: 525–530Google ScholarPubMed
Brown, A. S., Schaefer, C. A., Wyatt, R. J., et al. (2002). Paternal age and risk of schizophrenia in adult offspring. Am J Psychiatry 159: 1528–1533CrossRefGoogle ScholarPubMed
Brown, R. T., Freeman, W. S., Perrin, J. M., et al. (2001). Prevalence and assessment of attention-deficit/hyperactivity disorder in primary care settings. Pediatrics 107: E43CrossRefGoogle ScholarPubMed
Callicott, J. H., Egan, M. F., Bertolino, A., et al. (1998). Hippocampal N-acetyl aspartate in unaffected siblings of patients with schizophrenia: a possible intermediate neurobiological phenotype. Biol Psychiatry 44: 941–950. [Erratum in Biol Psychiatry (1999). 45: 244.]CrossRefGoogle ScholarPubMed
Cantor-Graae, E., Pedersen, C. B., McNeil, T. F., Mortensen, P. B. (2003). Migration as a risk factor for schizophrenia: a Danish population-based cohort study. Br J Psychiatry 182: 117–122CrossRefGoogle ScholarPubMed
Carter, J. W., Parnas, J., Cannon, T. D., Schulsinger, F., Mednick, S. A. (1999). MMPI variables predictive of schizophrenia in the Copenhagen High-risk Project: a 25-year follow-up. Acta Psychiatr Scand 99: 432–440CrossRefGoogle ScholarPubMed
Chapman, L. J., Chapman, J. P., Raulin, M. L. (1976). Scales for physical and social anhedonia. J Abnorm Psychol 85: 374–382CrossRefGoogle ScholarPubMed
Chapman, L. J., Chapman, J. P., Raulin, M. L. (1978). Body-image aberration in schizophrenia. J Abnorm Psychol 87: 399–407CrossRefGoogle Scholar
Chapman, L. J., Chapman, J. P., Kwapil, T. R., Eckblad, M., Zinser, M. C. (1994). Putatively psychosis-prone subjects 10 years later. J Abnorm Psychol 103: 171–183CrossRefGoogle ScholarPubMed
Cornblatt, B., Erlenmeyer-Kimling, L. (1989). Attention and schizophrenia. Schizophr Res 2: 58CrossRefGoogle Scholar
Cornblatt, B. A., Keilp, J. G. (1994). Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophr Bull 20: 31–46CrossRefGoogle ScholarPubMed
Cornblatt, B., Obuchowski, M. (1997). Update of high risk research: 1987–1997. Int Rev Psychiatry 9: 437–447Google Scholar
David, A. S., Malmberg, A., Brandt, L., Allebeck, P., Lewis, G. (1997). IQ and risk for schizophrenia: a population-based cohort study. Psychol Med 27: 1311–1323CrossRefGoogle ScholarPubMed
Davidson, M., Reichenberg, A., Rabinowitz, J., et al. (1999). Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. Am J Psychiatry 156: 1328–1335Google ScholarPubMed
Di Maggio, C., Martinez, M., Menard, J. F., Petit, M., Thibaut, F. (2001). Evidence of a cohort effect for age at onset of schizophrenia. Am J Psychiatry 158: 489–492CrossRefGoogle ScholarPubMed
Done, D. J., Crow, T. J., Johnstone, E. C., Sacker, A. (1994). Childhood antecedents of schizophrenia and affective illness: social adjustments at ages 7 and 11. Br Med J 309: 699–703CrossRefGoogle ScholarPubMed
Dworkin, R. H., Cornblatt, B. A., Friedmann, R., et al. (1993). Childhood precursors of affective vs. social deficits in adolescents at risk for schizophrenia. Schizophr Bull 19: 563–577CrossRefGoogle ScholarPubMed
Dykes, K. L., Mednick, S. A., Machon, R. A., Praestholm, J., Parnas, J. (1992). Adult third ventricle width and infant behavioral arousal in groups at high and low risk for schizophrenia. Schizophr Res 7: 13–18CrossRefGoogle ScholarPubMed
Erlenmeyer-Kimling, L. (2000). Neurobehavioral deficits in offspring of schizophrenic parents: liability indicators and predictors of illness. Am J Med Genet 97: 65–713.0.CO;2-V>CrossRefGoogle Scholar
Erlenmeyer-Kimling, L., Squires-Wheeler, E., Hilldoff-Adamo, U. H., et al. (1995). The New York High-risk Project. Psychoses and cluster A personality disorders in offspring of schizophrenic parents at 23 years of follow-up. Arch Gen Psychiatry 52: 857–865CrossRefGoogle Scholar
Feinberg, I. (1982). Schizophrenia and late maturational brain changes in man. Psychopharmacol Bull 18: 29–31Google Scholar
Fish, B. (1984). Characteristics and sequelae of the neurointegrative disorder in infants at risk for schizophrenia: 1952–1982. In Children at Risk for Schizophrenia: A Longitudinal Perspective, ed. N. F. Watt, E. J. Anthony, L. C. Wynne, J. E. Rolf. New York: Cambridge University Press, pp. 423–439
Fish, B., Marcus, J., Hans, S. L., Auerbach, J. G., Perdue, S. (1992). Infants at risk for schizophrenia: sequelae of a genetic neurointegrative defect. A review and replication analysis of pandysmaturation in the Jerusalem infant development study. Arch Gen Psychiatry 49: 221–235CrossRefGoogle ScholarPubMed
Friedman, D., Squires-Wheeler, E. (1994). Event-related potentials (ERPs) as indicators for risk for schizophrenia. Schizophr Bull 20: 63–74CrossRefGoogle ScholarPubMed
Garver, D. L. (1987). Methodological issues facing the interpretation of high-risk studies: biological heterogeneity. Schizophr Bull 13: 525–529CrossRefGoogle ScholarPubMed
Goldstein, J. M., Seidman, L. J., Buka, S. L., et al. (2000). Impact of genetic vulnerability and hypoxia on overall intelligence by age 7 in offspring at high risk for schizophrenia compared with affective psychoses. Schizophr Bull 26: 323–334CrossRefGoogle ScholarPubMed
Gooding, D. C., Iacono, W. G. (1995). Schizophrenia through the lens of a developmental psychopathology perspective. In Developmental Psychopathology: Risk, Disorder, and Adaptation, Vol. 2, ed. D. Cicchetti, D. J. Cohen. New York: Wiley, pp. 535–580
Gottesman, I. I. (1991). Schizophrenia Genesis: The Origins of Madness. New York: W. H. Freeman
Gottesman, I. I., Erlenmeyer-Kimling, L. (2001). Family and twin strategies as a head start in defining prodromes and endophenotypes for hypothetical early-interventions in schizophrenia. Schizophr Res 51: 93–102CrossRefGoogle Scholar
Gottesman, I. I., Shields, J. (1982). Schizophrenia: The Epigenetic Puzzle. New York: Cambridge University Press
Gunnell, D., Harrison, G., Rasmussen, F., Fouskakis, D., Tynelius, P. (2002). Associations between premorbid intellectual performance, early-life exposures and early-onset schizophrenia. Cohort study. Br J Psychiatry 181: 298–305CrossRefGoogle ScholarPubMed
Hafner, H. (1990). New perspectives in the epidemiology of schizophrenia. In Search for the Causes of Schizophrenia, Vol. II, ed. H. Hafner, W. F. Gattaz. Berlin: Springer-Verlag, pp. 408–431CrossRef
Hanson, D. R., Gottesman, I. I., Heston, L. L. (1990). Long-range schizophrenia forecasting: many a slip twixt cup and lip. In Risk and Protective Factors in the Development of Psychopathology, ed. J. Rolf, A. Masten, D. Cicchetti, K. Nuechterlein, S. Weintraub. New York: Cambridge University PressCrossRef
Harrison, P. J., Owen, M. J. (2003). Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 361: 417–419CrossRefGoogle ScholarPubMed
Hollister, J. M., Mednick, S. A., Brennan, P., Cannon, T. D. (1994). Impaired autonomic nervous system-habituation in those at genetic risk for schizophrenia. Arch Gen Psychiatry 51: 552–558CrossRefGoogle ScholarPubMed
Johnstone, E. C., Russell, K. D., Harrison, L. K., Lawrie, S. M. J. (2003). The Edinburgh High Risk Study: current status and future prospects. World Psychiatry 2: 45–49Google ScholarPubMed
Jones, P. B., Tarrant, C. J. (1999). Specificity of developmental precursors to schizophrenia and affective disorders. Schizophr Res 39: 121–125CrossRefGoogle ScholarPubMed
Jones, P., Rodgers, B., Murray, R., Marmot, M. (1994). Child developmental risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet 344: 1398–1402CrossRefGoogle ScholarPubMed
Josiassen, R. C., Shagass, C., Roemer, R. A., Straumanis, J. J. (1985). Attention-related effects on somatosensory evoked potentials in college students at high risk for psychopathology. J Abnorm Psychiatry 94: 507–518CrossRefGoogle ScholarPubMed
Kemppainen, L., Veijola, J., Jokelainen, J., et al. (2001). Birth order and risk for schizophrenia: a 31-year follow-up of the Northern Finland 1966 Birth Cohort. Acta Psychiatr Scand 104: 148–152CrossRefGoogle ScholarPubMed
Kendler, K. S. (2002). Hierarchy and heritability: the role of diagnosis and modeling in psychiatric genetics. Am J Psychiatry 159: 515–518CrossRefGoogle ScholarPubMed
Keshavan, M. S., Hogarty, G. E. (1999). Brain maturational processes and delayed onset in schizophrenia. Dev Psychopathol 11: 525–543CrossRefGoogle Scholar
Keshavan, M. S., Schooler, N. R. (1992). First-episode studies of schizophrenia: criteria and characterization. Schizophr Bull 18: 491–513CrossRefGoogle ScholarPubMed
Keshavan, M. S., Montrose, D. M., Pierri, J. N., et al. (1997). Magnetic resonance imaging and spectroscopy in offspring at risk for schizophrenia: preliminary studies. Prog Neuropsychopharmacol Biol Psychiatry 21: 1285–1295CrossRefGoogle ScholarPubMed
Keshavan, M. S., Dick, E., Mankowski, I., et al. (2002a). Decreased left amygdala and hippocampal volumes in young offspring at risk for schizophrenia. Schizophr Res 58: 173–183CrossRefGoogle Scholar
Keshavan, M. S., Diwadkar, V. A., Spencer, S. M., et al. (2002b). A preliminary functional magnetic resonance imaging study in offspring of schizophrenic parents. Prog Neuropsychopharmacol Biol Psychiatry 26: 1143–1149CrossRefGoogle Scholar
Keshavan, M. S., Stanley, J. A., Montrose, D. M., Minshew, N. J., Pettegrew, J. W. (2003). Prefrontal membrane phospholipid metabolism of child and adolescent offspring at risk for schizophrenia or schizoaffective disorder: an in vivo (31)P MRS study. Mol Psychiatry 8: 316–323CrossRefGoogle Scholar
Kim-Cohen, J., Caspi, A., Moffitt, T. E., et al. (2003). Prior juvenile diagnoses in adults with mental disorder: developmental follow-back of a prospective-longitudinal cohort. Arch Gen Psychiatry 60: 709–717CrossRefGoogle ScholarPubMed
Klemm, S., Rzanny, R., Riehemann, S., et al. (2001). Cerebral phosphate metabolism in first-degree relatives of patients with schizophrenia. Am J Psychiatry 158: 958–960CrossRefGoogle ScholarPubMed
Klosterkotter, J., Hellmich, M., Steinmeyer, E. M., Schultze-Lutter, F. (2001). Diagnosing schizophrenia in the initial prodromal phase. Arch Gen Psychiatry 58: 158–164CrossRefGoogle ScholarPubMed
Kremen, W. S., Seidman, L. J., Pepple, J. R., et al. (1994). Neuropsychological risk indicators for schizophrenia: a review of family studies. Schizophr Bull 20: 103–119CrossRefGoogle ScholarPubMed
Kwapil, T. R. (1998). Social anhedonia as a predictor of the development of schizophrenia-spectrum disorders. J Abnorm Psychol 107: 558–565CrossRefGoogle ScholarPubMed
Kwapil, T. R., Miller, M. B., Zinser, M. C., Chapman, J., Chapman, L. J. (1997). Magical ideation and social anhedonia as predictors of psychosis proneness: a partial replication. J Abnorm Psychol 106: 491–495CrossRefGoogle ScholarPubMed
Lawrie, S. M., Whalley, H., Kestelman, J. N., et al. (1999). Magnetic resonance imaging of brain in people at high risk of developing schizophrenia. [See comments]Lancet 353: 30–33CrossRefGoogle Scholar
Lawrie, S. M., Byrne, M., Miller, P., et al. (2001). Neurodevelopmental indices and the development of psychotic symptoms in subjects at high risk of schizophrenia. Br J Psychiatry 178: 524–530CrossRefGoogle ScholarPubMed
Leask, S. J., Done, D. J., Crow, T. J. (2002). Adult psychosis, common childhood infections and neurological soft signs in a national birth cohort. Br J Psychiatry 181: 387–392CrossRefGoogle Scholar
Lencz, T., Raine, A., Scerbo, A., et al. (1993). Impaired eye tracking in undergraduates with schizotypal personality disorder. Am J Psychiatry 150: 152–154Google ScholarPubMed
Lencz, T., Cornblatt, B., Bilder, R. M. (2001). Neurodevelopmental models of schizophrenia: pathophysiologic synthesis and directions for intervention research. Psychopharmacol Bull 35: 95–125Google ScholarPubMed
Lenzenweger, M. F. (1994). Psychometric high-risk paradigm, perceptual aberrations, and schizotypy: an update. Schizophr Bull 20: 121–135CrossRefGoogle ScholarPubMed
Levy, D. L., Holzman, P. S., Matthysse, S., Mendell, N. R. (1994). Eye tracking and schizophrenia: a selective review. Schizophr Bull 20: 47–62CrossRefGoogle ScholarPubMed
Maier, W., Franke, P., Hain, C., Kipp, B., Rist, F. (1992). Neuropsychological indicators of the vulnerability to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 16: 703–715CrossRefGoogle Scholar
Marcus, J., Hans, S. L., Nagler, S., et al. (1987). Review of the NIMH Israeli Kibbutz-City Study and the Jerusalem Infant Development Study. Schizophr Bull 13: 425–438CrossRefGoogle ScholarPubMed
Marcus, J., Hans, S. L., Auerbach, J. G., Auerbach, A. G. (1993). Children at risk for schizophrenia: the Jerusalem Infant Development Study. II. Neurobehavioral deficits at school age. Arch Gen Psychiatry 50: 797–809CrossRefGoogle ScholarPubMed
McGlashan, T. H. (1998). Early detection and intervention of schizophrenia: rationale and research. Br J Psychiatry 172: 3–6Google ScholarPubMed
McGorry, P. D. (1998). “A stitch in time” … the scope for preventive strategies in early psychosis. Eur Arch Psychiatry Clin Neurosci 248: 22–31CrossRefGoogle Scholar
McGorry, P. D., Yung, A. R., Phillips, L. J., et al. (2002). Randomized controlled trial of interventions designed to reduce the risk of progression to first-episode psychosis in a clinical sample with subthreshold symptoms. Arch Gen Psychiatry 59: 921–928CrossRefGoogle Scholar
McGuffin, P., Farmer, A. E., Gottesman, I. I., Murray, R. M., Reveley, A. M. (1984). Twin concordance for operationally defined schizophrenia. Confirmation of familiality and heritability. Arch Gen Psychiatry 41: 541–545CrossRefGoogle ScholarPubMed
McNeil, T. F., Harty, B., Blennow, G., Cantor-Graae, E. (1993). Neuromotor deviation in offspring of psychotic mothers: a selective developmental deficiency in two groups of children at heightened psychiatric risk?J Psychiatr Res 27: 39–54CrossRefGoogle ScholarPubMed
Mednick, S. A., Parnas, J., Schulsinger, F. (1987). The Copenhagen High-risk Project, 1962–1986. Schizophr Bull 13: 485–495CrossRefGoogle Scholar
Michie, P. T., Kent, A., Stienstra, R., et al. (2000). Phenotypic markers as risk factors in schizophrenia: neurocognitive functions. Aust NZ J Psychiatry 34(Suppl): S74–S85CrossRefGoogle ScholarPubMed
Miller, P., Byrne, M., Hodges, A., et al. (2002). Schizotypal components in people at high risk of developing schizophrenia: early findings from the Edinburgh High Risk Study. Br J Psychiatry 180: 179–184CrossRefGoogle ScholarPubMed
Mirsky, A. F., Kugelmass, S., Ingraham, L. J., Frenkel, E., Nathan, M. (1995). Overview and summary: twenty-five year follow-up of high-risk children. Schizophr Bull 21: 227–239CrossRefGoogle Scholar
Moldin, S. O., Gottesman, I. I., Rice, J., Erlenmeyer-Kimling, L. (1991). Replicated psychometric correlates of schizophrenia. Am J Psychiatry 148: 762–767Google ScholarPubMed
Murray, R. M., Lewis, S. W. (1987). Is schizophrenia a neurodevelopmental disorder? [Editorial]Br Med J (Clin Res Ed) 295: 681–682CrossRefGoogle Scholar
Nasrallah, H. A., Tolbert, H. A. (1997). Neurobiology and neuroplasticity in schizophrenia. Continuity across the life cycle. [Comment]Arch Gen Psychiatry 54: 913–914CrossRefGoogle Scholar
Niemi, L. T., Suvisaari, J. M., Tuulio-Henriksson, A., Lonnqvist, J. K. (2003). Childhood developmental abnormalities in schizophrenia: evidence from high-risk studies. Schizophr Res 60: 239–258CrossRefGoogle ScholarPubMed
Nuechterlein, K. H., Dawson, M. E., Gitlin, M., et al. (1992). Developmental processes in schizophrenic disorders: longitudinal studies of vulnerability and stress. Schizophr Bull 18: 387–425CrossRefGoogle Scholar
Parnas, J., Cannon, T. D., Jacobsen, B., et al. (1993). Lifetime DSM-III-R diagnostic outcomes in the offspring of schizophrenic mothers. Results from the Copenhagen High-risk Study. Arch Gen Psychiatry 50: 707–714CrossRefGoogle ScholarPubMed
Pearson, J. S., Kley, I. B. (1957). On the application of genetic expectancies as age specific base rates in the study of human behavior disorders. Psychol Bull 54: 406–420CrossRefGoogle Scholar
Poulton, R. A. C., Moffitt, T. E., Cannon, M., Murray, R., Harrington, H. (2000). Children's self-reported psychotic symptoms and adult schizophreniform disorder: a 15-year longitudinal study. Arch Gen Psychiatry 57: 1053–1058CrossRefGoogle ScholarPubMed
Rantakallio, P., Jones, P. B., Moring, J., Wendt, L. (1997). Association between central nervous system infections during childhood and adult onset schizophrenia and other psychoses: a 28-year follow-up. Int J Epidemiol 26: 837–843CrossRefGoogle ScholarPubMed
Reveley, A. M., Reveley, M. A., Clifford, C. A., Murray, R. M. (1982). Cerebral ventricular size in twins discordant for schizophrenia. Lancet : 540–541CrossRefGoogle Scholar
Ross, R. G. (2003). Early expression of a pathophysiological feature of schizophrenia: saccadic intrusions into smooth-pursuit eye movements in school-age children vulnerable to schizophrenia. J Am Acad Child Adolesc Psychiatry 42: 468–476CrossRefGoogle Scholar
Saitoh, O., Niwa, S., Hiramatsu, K., et al. (1984). Abnormalities in late positive components of event-related potentials may reflect genetic predisposition to schizophrenia. Biol Psychiatry 19: 293–303Google Scholar
Sarfati, Y., Hardy-Bayle, M. C. (2002). Could cognitive vulnerability identify high-risk subjects for schizophrenia?Am J Med Genet 114: 893–897CrossRefGoogle Scholar
Schreiber, H., Stolz, G., Rothmeier, J., Kornhuber, H. H., Born, J. (1989). Prolonged latencies of the N2 and P3 of the auditory event-related potential in children at risk for schizophrenia. A preliminary report. Eur Arch Psychiatry Neurol Sci 238: 185–188CrossRefGoogle ScholarPubMed
Schreiber, H., Baur-Seack, K., Kornhuber, H. H., et al. (1999). Brain morphology in adolescents at genetic risk for schizophrenia assessed by qualitative and quantitative magnetic resonance imaging. Schizophr Res 40: 81–84CrossRefGoogle ScholarPubMed
Seidman, L. J., Faraone, S. V., Goldstein, J. M., et al. (2002). Left hippocampal volume as a vulnerability indicator for schizophrenia: a magnetic resonance imaging morphometric study of nonpsychotic first-degree relatives. Arch Gen Psychiatry 59: 839–849CrossRefGoogle ScholarPubMed
Siever, L. J. (1994). Biologic factors in schizotypal personal disorders. Acta Psychiatr Scand 384: 45–50CrossRefGoogle ScholarPubMed
Suddath, R. L., Christison, G. W., Torrey, E. F., Casanova, M. F., Weinberger, D. R. (1990). Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med 322: 789–794CrossRefGoogle Scholar
Tienari, P., Wynne, L. C., Moring, J., et al. (1994). The Finnish adoptive family study of schizophrenia: implications for family research. Br J Psychiatry 164: 20–26Google Scholar
Venables, P. H., Mednick, S. A., Schulsinger, S. F., et al. (1978). Screening for risk in mental illness. In Cognitive Defects in the Development of Mental Illness, ed. G. M. Serban. New York: Brunner/Mazel, pp. 273–303
Verdoux, H., Sutter, A. L. (2002). Perinatal risk factors for schizophrenia: diagnostic specificity and relationships with maternal psychopathology. Am J Med Genet 114: 898–905CrossRefGoogle ScholarPubMed
Von Bertalanffy, K. (1968). General Systems Theory. New York: Brazilier
Wahlbeck, K., Forsen, T., Osmond, C., Barker, D. J., Eriksson, J. G. (2001). Association of schizophrenia with low maternal body mass index, small size at birth, and thinness during childhood. Arch Gen Psychiatry 58: 48–52CrossRefGoogle ScholarPubMed
Walker, E., Lewine, R. (1990). Prediction of adult onset schizophrenia from childhood movies of patients. Am J Psychiatry 147: 1052–1056Google Scholar
Walker, E., Grimes, K., Davis, D., Smith, A. (1993). Childhood precursors of schizophrenia: facial expressions of emotion. Am J Psychiatry 150: 1654–1660Google ScholarPubMed
Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44: 660–669CrossRefGoogle ScholarPubMed
Weinberger, D. R., DeLisi, L. E., Neophytides, A. N., Wyatt, R. J. (1981). Familial aspects of CT scan abnormalities in chronic schizophrenic patients. Psychiatry Res 4: 65–71CrossRefGoogle ScholarPubMed
Weiser, M., Reichenberg, A., Rabinowitz, J., et al. (2001). Association between nonpsychotic psychiatric diagnoses in adolescent males and subsequent onset of schizophrenia. Arch Gen Psychiatry 58: 959–964CrossRefGoogle ScholarPubMed
Wynne, L. C., Cole, R. E., Perkins, P. (1987). University of Rochester child and family study: risk research in progress. Schizophr Bull 13: 463–476CrossRefGoogle ScholarPubMed
Yung, A. R., Phillips, L. J., McGorry, P. D., et al. (1998). Prediction of psychosis. A step towards indicated prevention of schizophrenia. Br J Psychiatry Suppl 172: 14–20Google ScholarPubMed
Yung, A. R., Phillips, L. J., Yuen, H. P., et al. (2003). Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group. Schizophr Res 60: 21–32CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×