Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-18T19:03:23.305Z Has data issue: false hasContentIssue false

Chapter 2 - Spina Bifida Myelomeningocele

Published online by Cambridge University Press:  27 July 2018

Jacobus Donders
Affiliation:
Mary Free Bed Rehabilitation Hospital
Scott J. Hunter
Affiliation:
University of Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adzick, N. S., Thom, E. A., Spong, C. Y., Brock, J. W. 3rd, Burrows, P. K., Johnson, M. P., … MOMS Investigators (2011). A randomized trial of prenatal versus postnatal repair of myelomeningocele. New England Journal of Medicine, 364(11), 9931004.CrossRefGoogle ScholarPubMed
Barnes, M., Dennis, M., & Hetherington, R. (2004). Reading and writing skills in young adults with spina bifida and hydrocephalus. Journal of the International Neuropsychological Society, 10(5), 655663.CrossRefGoogle ScholarPubMed
Barnes, M., Raghubar, K., English, L., Williams, J., Taylor, H., & Landry, S. (2014). Longitudinal mediators of achievement in mathematics and reading in typical and atypical development. Journal of Experimental Child Psychology, 119, 116.CrossRefGoogle ScholarPubMed
Barnes, M. A., Smith-Chant, B., & Landry, S. (2005). Number processing in neurodevelopmental disorders: Spina bifida myelomeningocele. In: Campbell, J. (Ed.) Handbook of mathematical cognition (pp. 299314). New York: Psychology Press.Google Scholar
Beery, K. E., & Beery, N. A. (2004). The Beery-Buktenica developmental test of visual motor integration: Administration, scoring, and teaching manual (5th ed.) Minneapolis, MN: NCS Pearson.Google Scholar
Bellin, M. H, Dosa, N., Zabel, T. A., Aparicio, E., Dicianno, B. E., & Osteen, P. (2013). Self-management, satisfaction with family functioning, and the course of psychological symptoms in emerging adults with spina bifida. Journal of Pediatric Psychology, 38(1), 5062. doi: 10.1093/jpepsy/jss095.CrossRefGoogle ScholarPubMed
Bellin, M. H., Sawin, K. J., Roux, G., Buran, C. F., & Brei, T. J. (2007). The experience of adolescent women living with spina bifida part I: Self-concept and family relationships. Rehabilitation Nursing, 32(2), 5767. https://doi.org/10.1002/j.2048–7940.2007.tb00153.xCrossRefGoogle ScholarPubMed
Bellin, M. H., Zabel, T. A., Dicianno, B. E., Levey, E., Garver, K., Linroth, R., & Braun, P. (2010). Correlates of depressive and anxiety symptoms in young adults with spina bifida. Journal of Pediatric Psychology, 35(7), 778789. doi: 10.1093/jpepsy/jsp094CrossRefGoogle ScholarPubMed
Betz, C. L., Redcay, G., & Tan, S. (2003). Self-reported health care self-care needs of transition-aged youth: A pilot study. Issues in Comprehensive Pediatric Nursing, 26(3), 159181.CrossRefGoogle ScholarPubMed
Botto, L. D., & Mulinare, J. (1999). Maternal vitamin use, genetic variation of infant methylenetetrahydrofate reductase, and risk for spina bifida. American Journal of Epidemiology, 150(3), 323324.CrossRefGoogle ScholarPubMed
Boudos, R. M., & Mukherjee, S. (2008). Barriers to community participation: Teens and young adults with spina bifida. Journal of Pediatric Rehabilitation Medicine, 1(4), 303310.Google Scholar
Bowman, R., McLone, D., Grant, J., Tomita, T., & Ito, J. (2001). Spina bifida outcome: A 25-year prospective. Pediatric Neurosurgery, 134, 114120.CrossRefGoogle Scholar
Brislin, D. (2008). Reaching for independence: Counseling implications for youth with spina bifida. Journal of Counseling & Development, 86(1), 3438.CrossRefGoogle Scholar
Brown, T., Ris, M., Beebe, D., Ammerman, R., Oppenheimer, S., Yeates, K., & Enrile, B. (2008). Factors of biological risk and reserve associated with executive behaviors in children and adolescents with spina bifida myelomeningocele. Child Neuropsychology, 14(2), 118134.CrossRefGoogle ScholarPubMed
Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523547.CrossRefGoogle ScholarPubMed
Buran, C. F., Sawin, K. J., Brei, T. J., & Fastenau, P. S. (2004). Adolescents with myelomeningocele: Activities, beliefs, expectations, and perceptions. Developmental Medicine & Child Neurology, 46(4), 244252. doi: 10.1017/S0012162204000404CrossRefGoogle ScholarPubMed
Buran, C. F., Brei, T. J., Sawin, K. J., Stevens, S., & Neufeld, J. (2006). Further development of the adolescent self management and independence scale: AMIS II. Cerebrospinal Fluid Research, 3(Suppl 1), S37.CrossRefGoogle Scholar
Calarusso, R. P., & Hammill, D. D. (2003). Motor-Free Visual Perception Test (3rd ed.). Novata: CA: Academic Therapy Publications.Google Scholar
Carrow-Woolfolk, E. (1999). Comprehensive assessment of spoken language. Bloomington, MN: Pearson Clinical.Google Scholar
Centers for Disease Control and Prevention. (2011). Neural tube defect ascertainment project. Retrieved from http://www.nbdpn.org.Google Scholar
Coakley, R. M., Holmbeck, G. N., Friedman, D., Greenly, R. N., & Thill, A. W. (2002). A longitudinal study of pubertal timing, parent-child conflict, and cohesion in families of young adolescents with spina bifida. Journal of Pediatric Psychology, 27(5), 461473. doi: 10.1093/jpepsy/27.5.461.CrossRefGoogle ScholarPubMed
Committee on Hospital Care and Institute for Patient- and Family-Centered Care (2012). Patient- and family-centered care and the pediatrician’s role. Pediatrics, 129(2), 394404. doi:10.1542/peds.2011-3084.CrossRefGoogle Scholar
Copp, A. J., Adzick, N. S., Chitty, L. S., Fletcher, J. M., Holmbeck, G. N., & Shaw, G. M. (2015). Spina bifida. Nature Reviews Disease Primers, 1, 118. doi: 10.1038/nrdp.2015.7CrossRefGoogle ScholarPubMed
Coughlin, J., & Montague, M. (2011). The effects of cognitive strategy instruction on the mathematical problem solving of adolescents with spina bifida. The Journal of Special Education, 45(3), 171183.CrossRefGoogle Scholar
Cunningham, S., Thomas, P., & Warschausky, S. (2007). Gender differences in peer relations of children with neurodevelopmental conditions. Rehabilitation Psychology, 52(3), 331337. doi: 10.1037/0090-5550.52.3.331CrossRefGoogle Scholar
Danzer, E., Thomas, N. H., Thomas, A., Friedman, K. B., Gerdes, M., Koh, J., … Johnson, M. P. (2016). Long-term neurofunctional outcome, executive functioning, and behavioral adaptive skills following fetal myelomeningocele surgery. American Journal of Obstetrics and Gynecology, 214(2), 269, e1e8.CrossRefGoogle ScholarPubMed
Dennis, M., & Barnes, M. A. (2010). The cognitive phenotype of spina bifida meningomyelocele. Developmental Disabilities Research Reviews, 16(1), 3139.CrossRefGoogle ScholarPubMed
Dennis, M., Fletcher, J. M., Rogers, T., Hetherington, R., & Francis, D. J. (2002). Object-based and action-based visual perception in children with spina bifida and hydrocephalus. Journal of the International Neuropsychological Society, 8(1), 95106.CrossRefGoogle ScholarPubMed
Dennis, M., Jewell, D., Drake, J., Misakyan, T., Spiegler, B., Hetherington, R., … Barnes, M. (2007). Prospective, declarative, and nondeclarative memory in young adults with spina bifida. Journal of the International Neuropsychological Society, 13(2), 312323.CrossRefGoogle ScholarPubMed
Dennis, M., Nelson, R., Jewell, D., & Fletcher, M. (2010). Prospective memory in adults with spina bifida. Child’s Nervous System, 26(12), 17491755. doi:10.1007/s00381-010-1140CrossRefGoogle ScholarPubMed
Devine, K. A., Holbein, C. E., Psihogios, A. M., Amaro, C. M., & Holmbeck, G. N. (2012). Individual adjustment, parental functioning, and perceived social support in Hispanic and non-Hispanic white mothers and fathers of children with spina bifida. Journal of Pediatric Psychology, 37(7), 769778. doi:10.1093/jpepsy/jsr083CrossRefGoogle ScholarPubMed
Devine, K. A., Holmbeck, G. N., Gayes, L., & Purnell, J. Q. (2012). Friendships of children and adolescents with spina bifida: Social adjustment, social performance, and social skills. Journal of Pediatric Psychology, 37(2), 220231. doi: 10.1093/jpepsy/jsr075CrossRefGoogle ScholarPubMed
Dicianno, B., Kurowski, B., Yang, J., Chancellor, M., Bejjani, G., Fairman, A., … Sotirake, J. (2008). Rehabilitation and medical management of the adult with spina bifida. American Journal of Physical Medicine & Rehabilitation, 87(12), 1027–50.CrossRefGoogle ScholarPubMed
Dockree, P. M., Bellgrove, M. A., O’Keeffe, F. M., Moloney, P., Aimola, L., Carton, S., & Robertson, I. H. (2006). Sustained attention in traumatic brain injury (TBI) and healthy controls: Enhanced sensitivity with dual task load. Experimental Brain Research, 168, 218229.CrossRefGoogle ScholarPubMed
Dunn, L. M. & Dunn, L. M. (1981). Peabody Picture Vocabulary Test – Revised (PPVT). Circle Pines, MN: American Guidance Service.Google Scholar
Fletcher, J. M., Barnes, M., & Dennis, M. (2002). Language development in children with spina bifida. Seminars in Pediatric Neurology, 9(3), 201208.CrossRefGoogle ScholarPubMed
Fletcher, J. M., Bohan, T. P., Brandt, M. E., Kramer, L. A., Brookshire, B. L., Thorstad, K., … Baumgartner, J. E. (1996). Morphometric evaluation of the hydrocephalic brain: Relationships with cognitive development. Children’s Nervous System, 12(4), 192199.CrossRefGoogle ScholarPubMed
Fletcher, J. M., Dennis, M., Northrup, H., & Francis, D. J. (2004). Spina bifida: Genes, brain, and development. International Review of Research in Mental Retardation, 29, 63117.CrossRefGoogle Scholar
Fletcher, J. M., Ostermaier, K. K., Cirino, P. T., & Dennis, M. (2008). Neurobehavioral outcomes in spina bifida: Processes versus outcomes. Journal of Pediatric Rehabilitation Medicine, 1(4), 311324.Google ScholarPubMed
Friedman, D., Holmbeck, G. N., Jandasek, B., Zukerman, J., & Abad, M. (2004). Parent functioning in families of preadolescents with spina bifida: Longitudinal implications for child adjustment. Journal of Family Psychology, 18(4), 609619. doi: 10.1037/0893-3200.18.4.609CrossRefGoogle ScholarPubMed
Ginsburg, H. P., & Baroody, A. J. (2003). Test of early mathematics ability (3rd ed.). Boston, MA: Houghton Mifflin Harcourt.Google Scholar
Golden, C. (2004). Stroop Color and Word Test. North Tonawanda, NY: Multi-Health Systems.Google Scholar
Hasan, K. M., Eluvathingal, T. J., Kramer, L. A., Ewing-Cobbs, L., Dennis, M., & Fletcher, J. M. (2008). White matter microstructural abnormalities in children with spina bifida myelomeningocele and hydrocephalus: A diffusion tensor tractography study of the association pathways. Journal of Magnetic Resonance Imaging: JMRI, 27(4), 700709. https://doi.org/10.1002/jmri.21297CrossRefGoogle ScholarPubMed
Harrison, P., & Oakland, T. (2015). Adaptive behavior assessment system (3rd ed.). Torrance, CA: WPS.Google Scholar
Heffelfinger, A. K., Koop, J. I., Fastenau, P. S., Brei, T. J., Conant, L., Katzenstein, J., … Sawin, K. J. (2008). The relationship of neuropsychological functioning to adaptaion outcome in adolescents with spina bifida. Journal of the International Neuropsychological Society, 14, 793804.CrossRefGoogle Scholar
Holbein, C. E., Lennon, J. M., Kolbuck, V. D., Zebracki, K., Roache, C., & Holmbeck, G. N. (2015). Observed differences in social behaviors exhibited in peer interactions between youth with spina bifida and their peers: Neuropsychological correlates. Journal of Pediatric Psychology, 40(3), 320335. doi: 10.1093/jpepsy/jsu101CrossRefGoogle ScholarPubMed
Holbein, C. E., Murray, C. B., Psihogios, A. M., Wasserman, R. M., Essner, B., & Holmbeck, G. N. (2013). A camp-based psychosocial intervention to promote independence and social function in individuals with spina bifida: Moderators of treatment effectiveness. Journal of Pediatric Psychology 38(4), 412424. doi:10.1093/jpepsy/jst003CrossRefGoogle Scholar
Holbein, C. E., Zebracki, K., Bechtel, C. F., Lennon Papadakis, J., Franks Bruno, E., & Holmbeck, G. N. (2016). Milestone achievement in emerging adulthood in spina bifida: A longitudinal investigation of parental expectations. Developmental Medicine and Child Neurology, epub ahead of print, doi: 10.1111/dmcn.13279.CrossRefGoogle Scholar
Holbein, C. E., Zebracki, K., & Holmbeck, G. N. (2014). Development and validation of the peer interaction macro-coding system scales (PIMS): A new tool for observational measurement of social competence in youth with spina bifida. Psychological Assessment, 26(4), 12351246. doi: 10.1037/a0037062CrossRefGoogle ScholarPubMed
Holmbeck, G. N., Coakley, R. M., Hommeyer, J., Shapera, W. E., & Westhoven, V. (2002). Observed and perceived dyadic and systemic functioning in families of preadolescents with spina bifida. Journal of Pediatric Psychology, 27(2), 177189. doi: 10.1093/jpepsy/27.2.177CrossRefGoogle ScholarPubMed
Holmbeck, G. N., DeLucia, C., Essner, B., Kelly, L., Zebracki, K., Friedman, D., & Jandasek, B. (2010). Trajectories of psychosocial adjustment in adolescents with spina bifida: A 6-year, four-wave longitudinal follow-up. Journal of Consulting and Clinical Psychology, 78(4), 511525. doi: 10.1037/a0019599CrossRefGoogle ScholarPubMed
Holmbeck, G. N., & Devine, K. A. (2010). Psychological and family functioning in spina bifida. Developmental Disabilities, 16(1), 4046. doi: 10.1002/ddrr.90Google Scholar
Holmbeck, G. N., Greenley, R. N., Coakley, R. M., Greco, J., & Hagstrom, J. (2006). Family functioning in children and adolescents with spina bifida: An evidence-based review of research and interventions. Journal of Developmental and Behavioral Pediatrics, 27(3), 249277.CrossRefGoogle ScholarPubMed
Holmbeck, G. N., Westhoven, V. C., Phillips, W. S., Bowers, R., Gruse, C., Nikolopoulos, T., Tortura, C. M., & Davison, K. (2003). A multimethod, multi-informant, and multidimensional perspective on psychosocial adjustment in preadolescents with spina bifida. Journal of Consulting and Clinical Psychology, 71(4), 782796. doi: 10.1037/0022-006X.71.4.782CrossRefGoogle ScholarPubMed
Jandasek, B., Holmbeck, G. N., DeLucia, C., Zebracki, K., & Friedman, D. (2009). Trajectories of family processes across the adolescent transition in youth with spina bifida. Journal of Family Psychology, 23, 726738. doi: 10.1037/a0016116CrossRefGoogle ScholarPubMed
Juranek, J., Fletcher, J. M., Hasan, K. M., Breir, J. I., Cirino, P. T., Pazo-Alvarez, P., … Papanicolaou, A. C. (2008). Neocortical reorganization in spina bifida. Neuroimage, 40(4), 15161522. doi: 10.1016/j.neuroimage.2008.01.043.CrossRefGoogle ScholarPubMed
Kabra, A. T., Feustal, P. J., & Kogan, B. A. (2015) Screening for depression and anxiety in childhood neurogenic bladder dysfunction. Journal of Pediatric Urology, 11, 75.e175.e7. doi: 10.1016/j.jpurol.2014.11.017CrossRefGoogle ScholarPubMed
Kaufman, A. S., & Kaufman, N. L. (2014). Kaufman test of educational achievement (3rd ed.). San Antonio, TX: Pearson.Google Scholar
Kaugars, A. S., Zebracki, K., Kichler, J. C., Fitzgerald, C. J., Greenley, R. N., Alemzadeh, R., & Holmbeck, G. N. (2011). Use of the Family Interaction Macro-coding System with families of adolescents: Psychometric properties among pediatric and healthy populations. Journal of Pediatric Psychology, 36(5), 539551. doi: 10.1093/jpepsy/jsq106CrossRefGoogle ScholarPubMed
Kelly, N. C., Ammerman, R. T., Rausch, J. R., Ris, M. D., Yeates, K. O., Oppenheimer, S.G., & Enrile, B. G. (2012). Executive functioning and psychological adjustment in children and youth with spina bifida. Child Neuropsychology, 18(5), 417431. doi:10.1080/09297049.2011.613814CrossRefGoogle ScholarPubMed
Kelly, L. M., Zebracki, K., Holmbeck, G. N., & Gershenson, L. (2008). Adolescent development and family functioning in youth with spina bifida. Journal of Pediatric Rehabilitation Medicine, 1(4), 291302.Google ScholarPubMed
Kennedy, S. E., Martin, S. G., Kelley, J. M., Walton, B., Vlcek, C. K., Hassanein, R. S., & Holmes, G. E. (1998). Identification of medical and nonmedical needs of adolescents and young adults with spina bifida and their families: A preliminary study. Children’s Health Care, 27(1), 4761.CrossRefGoogle Scholar
Kulesz, P. A., Treble-Barna, A., Williams, V. J., Juranek, J., Cirino, P. T., Dennis, M., & Fletcher, J. M. (2015). Attention in spina bifida myelomeningocele: Relations with brain volume and integrity. NeuroImage Clinical, 8, 7278.CrossRefGoogle ScholarPubMed
Law, M., King, G., King, S., Kertoy, M., Hurley, P., Rosenbaum, P., … Hanna, S. (2006). Patterns of participation in recreational and leisure activities among children with complex physical disabilities. Developmental Medicine & Child Neurology, 48, 337342.CrossRefGoogle ScholarPubMed
Leger, R. R. (2005). Severity of illness, functional status, and HRQOL in youth with spina bifida. Rehabilitation Nursing, 30(5), 180187.CrossRefGoogle ScholarPubMed
Lennon, J. M., Klages, K. L., Amaro, C. M., Murray, C. B., & Holmbeck, G. N. (2015). Longitudinal study of neuropsychological functioning and internalizing symptoms in youth with spina bifida: Social competence as a mediator. Journal of Pediatric Psychology, 40(3), 336348. doi: 10.1093/jpepsy/jsu075.CrossRefGoogle ScholarPubMed
Lennon, J. M., Murray, C. B., Bechtel, C. F., & Holmbeck, G. N. (2015). Resilience and disruption in observed family interactions in youth with and without spina bifida: An eight-year, five-wave longitudinal study. Journal of Pediatric Psychology, 40(9), 943955. doi: 10.1093/jpepsy/jsv033CrossRefGoogle ScholarPubMed
Liptak, G. S., Kennedy, J. A., & Dosa, N. P. (2010). Youth with spina bifida and transitions: Health and social participation in a nationally represented sample. The Journal of Pediatrics, 157(4), 584588. doi: 10.1016/j.jpeds.2010.04.004CrossRefGoogle Scholar
Lomax-Bream, L. E., Barnes, M., Copeland, K., Taylor, H. B., & Landry, S. H. (2007). The impact of spina bifida on development across the first 3 years. Developmental Neuropsychology, 31(1), 120. https://doi.org/10.1080/87565640709336884CrossRefGoogle ScholarPubMed
Lutz, B. R., Venkataraman, P., & Browd, S. R. (2013). New and improved ways to treat hydrocephalus: Pursuit of a smart shunt. Surgical Neurology International, 4 (Suppl 1), S38S50.CrossRefGoogle ScholarPubMed
Mahmood, D., Dicianno, B., & Bellin, M. (2011). Self-management, preventable conditions and assessment of care among young adults with myelomeningocele. Child: Care, Health and Development, 37(6), 861865. https://doi.org/10.1111/j.1365–2214.2011.01299.xCrossRefGoogle ScholarPubMed
Matson, M., Mahone, E. M., & Zabel, T. A. (2005). Serial neuropsychological assessment and evidence of shunt malfunction in spina bifida: A longitudinal case study. Child Neuropsychology, 11(4), 315332.CrossRefGoogle ScholarPubMed
Mazzacco, M. M. M., & Thompson, R. E. (2005). Kindergarten predictors of math learning disability. Learning Disabilities: Research and Practice, 20(3), 142155.Google Scholar
Meyers, J. E., & Meyers, K. R. (1995). Rey complex figure test under four different administration procedures. The Clinical Neuropsychologist, 9(1), 6367.CrossRefGoogle Scholar
Moos, R. H., & Moos, B. S. (2002). Family environment scale manual: Development, applications, research. Palo Alto, CA: Mind Garden, Inc.Google Scholar
Mukerhjee, S. (2007). Transition to adulthood in spina bifida: Changing roles and expectations. The Scientific World Journal, 7, 18901895. doi: 10.1100/tsw.2007.179.CrossRefGoogle Scholar
Murphy, N., & Elias, E. (2006). Sexuality of children and adolescents with developmental disabilities. Journal of Pediatrics, 118(1), 398403.CrossRefGoogle ScholarPubMed
Murray, C. B., Holmbeck, G. N. Ros, A. M., Flores, D. M., Mir, S. A., & Varni, J. W. (2015). A longitudinal examination of health-related quality of life in children and adolescents with spina bifida. Journal of Pediatric Psychology, 40(4), 419430. doi: 10.1093/jpepsy/jsu098.CrossRefGoogle ScholarPubMed
Murray, C. B., Lennon, J. M., Devine, K. A., Holmbeck, G. N., Klages, K., & Potthoff, L. M. (2014). The influence of social adjustment on normative and risky health behaviors in emerging adults with spina bifida. Health Psychology, 33(10), 11531163. doi: 10.1037/hea0000050CrossRefGoogle ScholarPubMed
Mukherjee, S. (2007). Transition to adulthood in spina bifida: Changing roles and expectations. The Scientific World Journal, 7, 18901895. https://doi.org/10.1100/tsw.2007.179CrossRefGoogle ScholarPubMed
Naglieri, J. A., & Das, J. P. (1997). Cognitive assessment system. Itasca, IL: Riverside Publishing Company.Google Scholar
Noetzel, M. J., & Blake, J. N. (1991). Prognosis for seizure control and remission in children with myelomeningocele. Developmental Medicine and Child Neurology, 33(9), 803810.CrossRefGoogle ScholarPubMed
Oakeshott, P., Hunt, G. M., Poulton, A., & Reid, F. (2010). Expectation of life and unexpected death in open spina bifida: A 40-year complete, non-selective, longitudinal cohort study. Developmental Medicine & Child Neurology, 52(8), 749753. doi: 10.1111/j.1469-8749.2009.03543.xCrossRefGoogle ScholarPubMed
Oddson, B. E., Clancy, C. A., & McGrath, P. J. (2006). The role of pain in reduced quality of life and depressive symptomology in children with spina bifida. Clinical Journal of Pain, 22(9), 784789. doi: 10.1097/01.ajp.0000210929.43192.5dCrossRefGoogle ScholarPubMed
O’Mahar, K., Holmbeck, G. N., Jandasek, B., & Zukerman, J. (2010). A camp-based intervention targeting independence among individuals with spina bifida. Journal of Pediatric Psychology, 35(8), 848856. doi: 10.1093/jpepsy/jsp125CrossRefGoogle ScholarPubMed
Ottolini, K., Harris, A. B., Amling, J. K., Kennelly, A. M., & Phillips, L. A. (2013). Wound care challenges in children and adults with spina bifida: An open-cohort study. Journal of Pediatric Rehabilitation Medicine, 6(2013), 110.CrossRefGoogle ScholarPubMed
Ou, X., Snow, J., Byerley, A., Hall, J., & Glasier, C. (2013). Decreased activation and increased lateralization in brain functioning for selective attention and response inhibition in adolescents with spina bifida. Child Neuropsychology, 19(1), 2336.CrossRefGoogle ScholarPubMed
Parmanto, B., Pramana, G., Yu, D. X., Fairman, A. D., & Dicianno, B. E. (2015). Development of mHealth system for supporting self-management and remote consultation of skincare. BMC Medical Informatics and Decision Making, 15, 114.CrossRefGoogle ScholarPubMed
Pike, M., Swank, P., Taylor, H., Landry, S., & Barnes, M. A. (2013). Effect of preschool working memory, language, and narrative abilities on inferential comprehension at school-age in children with spina bifida myelomeningocele and typically developing children. Journal of the International Neuropsychological Society, 19(4), 390399. https://doi.org/10.1017/S1355617712001579CrossRefGoogle ScholarPubMed
Pinquart, M., & Shen, Y. (2011). Behavior problems in children and adolescents with chronic physical illness: A meta-analysis. Journal of Pediatric Psychology, 36(9), 10031216. doi:10.1093/jpepsy/jsr042CrossRefGoogle ScholarPubMed
Ramsundhar, N., & Donald, K. (2014). An approach to the developmental and cognitive profile of the child with spina bifida. South African Medical Journal, 104(3), 221. doi:10.7196/SAMJ.8048CrossRefGoogle Scholar
Rose, B., & Holmbeck, G. (2007). Attention and executive functions in adolescents with spina bifida. Journal of Pediatric Psychology, 32(8), 983–94.CrossRefGoogle ScholarPubMed
Sankhla, S., & Khan, G. M. (2009). Reducing CSF shunt placement in patients with spinal myelomeningocele. Journal of Pediatric Neurosciences, 4(1), 29.CrossRefGoogle ScholarPubMed
Sawin, K. J., & Bellin, M. H. (2010). Quality of life in individuals with spina bifida: A research update. Developmental Disabilities Research Reviews, 16, 4759.CrossRefGoogle ScholarPubMed
Sawin, K. J., Bellin, M. H., Roux, G., Buran, C. F., Brei, T. J., & Fastenau, P. S. (2003). The experience of parenting an adolescent with spina bifida. Rehabilitation Nursing, 28(6), 173185. doi: 10.1002/j.2048-7940.2003.tb02057.xCrossRefGoogle ScholarPubMed
Sawin, K. J., Brei, T. J., Buran, C. F., & Fastenau, P. S. (2002). Factors associated with quality of life in adolescents with spina bifida. Journal of Holistic Nursing, 20(3), 279304. doi: 10.1177/089801010202000307CrossRefGoogle ScholarPubMed
Schrank, F. A., Mather, N., & McGrew, K. S. (2014). Woodcock-Johnson IV tests of achievement. Boston, MA: Houghton Mifflin Harcourt.Google Scholar
Shandra, C. L., & Hogan, D. P. (2008). School-to-work program participation and the post-high school employment of young adults with disabilities. Journal of Vocational Rehabilitation, 29(2), 117130.Google ScholarPubMed
Shields, N., Taylor, N. F., & Dodd, K. J. (2008). Self-concept in children with spina bifida compared with typically developing children. Developmental Medicine & Child Neurology, 50(10), 733743. doi: 10.1111/j.1469-8749.2008.03096.xCrossRefGoogle ScholarPubMed
Spellicy, C., Northrup, H., Fletcher, J., Cirino, P., Dennis, M., Morrison, A., … Yao, Y. (2012). Folate metabolism gene 5,10-methylenetetrahydrofolate reductase (MTHFR) is associated with ADHD in myelomeningocele patients (association of MTHFR to ADHD with myelomeningocele). PLoS One, 7(12), E51330.CrossRefGoogle Scholar
Spina Bifida Association. (2015). Learning & education. Retrieved December 09, 2016, from http://spinabifidaassociation.org/resource-directory/learning-education/Google Scholar
Stubberud, J., Langenbahn, D., Levine, B., Stanghelle, J., & Schanke, A. (2013). Goal management training of executive functions in patients with spina bifida: A randomized controlled trial. Journal of the International Neuropsychological Society: JINS, 19(6), 672–85.CrossRefGoogle ScholarPubMed
Stubberud, J., Langenbahn, D., Levine, B., Stanghelle, J., & Schanke, A. K. (2015). Emotional health and coping in spina bifida after goal management training: a randomized controlled trial. Rehabilitation Psychology, 60(1), 116. doi: 10.1037/rep0000018.CrossRefGoogle ScholarPubMed
Swartwout, M., Cirino, P., Hampson, A., Fletcher, J., Brandt, M., Dennis, M., & Rao, Stephen M. (2008). Sustained attention in children with two etiologies of early hydrocephalus.Neuropsychology, 22(6), 765775.CrossRefGoogle ScholarPubMed
Swartwout, M., Garnaat, S., Myszka, K., Fletcher, J., & Dennis, M. (2010). Associations of ethnicity and SES with IQ and achievement in spina bifida meningomyelocele. Journal of Pediatric Psychology, 35(9), 927–36.CrossRefGoogle ScholarPubMed
Taylor, H., Landry, S., English, L. & Barnes, M. (2010). Infants and children with spina bifida. In Donders, J., & Hunter, S. J. (Eds.), Principles and practice of lifespan developmental neuropsychology. Cambridge, MA: Cambridge University Press.Google Scholar
Treble-Barna, A., Juranek, J., Stuebing, K. K., Cirino, P. T., Dennis, M., & Fletcher, J. M. (2015). Prospective and episodic memory in relation to hippocampal volume in adults with spina bifida myelomeningocele. Neuropsychology, 29(1), 92101.CrossRefGoogle ScholarPubMed
Trites, R. (1975). Grooved Pegboard Test user instructions. Lafayette, IN: Lafayette Instrument.Google Scholar
Tuminello, E., Holmbeck, G., & Olson, R. (2012). Executive functions in adolescents with spina bifida: Relations with autonomy development and parental intrusiveness. Child Neuropsychology, 18(2), 105124.CrossRefGoogle ScholarPubMed
Vachha, B., & Adams, R. C. (2005). Memory and selective learning in children with spina bifida-myelomeningocele and shunted hydrocephalus: A preliminary study. Cerebrospinal Fluid Research, 2, 10. https://doi.org/10.1186/1743–8454–2–10CrossRefGoogle ScholarPubMed
Vachha, B., & Adams, R. (2009). Implications of family environment and language development: comparing typically developing children to those with spina bifida. Child: Care, Health and Development, 35(5), 709716. https://doi.org/10.1111/j.1365–2214.2009.00966.xCrossRefGoogle ScholarPubMed
Vinck, A, Mullaart, R., Rotteveel, J., & Maassen, B. (2009). Neuropsychological assessment of attention in children with spina bifida. Fluids and Barriers of the CNS, 6(1), 6.CrossRefGoogle ScholarPubMed
Volcik, K. A., Blanton, S. H., Tyerman, G. H., Jong, S. T., Rott, E. J., Page, T. Z., … Northrup, H. (2000). Methylenetetrahydrofolate reductase and spina bifida: Evaluation of level of defect and maternal genotypic risk in Hispanics. American Journal of Medical Genetics, 95(1), 2127.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Ware, A., Kulesz, P., Williams, V., Juranek, J., Cirino, P., & Fletcher, J. (2016). Gray matter integrity within regions of the dorsolateral prefrontal cortical-subcortical network predicts executive function and fine motor dexterity in spina bifida. Neuropsychology, 2016.CrossRefGoogle Scholar
Warf, B. C., & Campbell, J. W. (2008). Combined endoscopic third ventriculostomy and choroid plexus cauterization as primary treatment of hydrocephalus for infants with myelomeningocele: Long-term results of a prospective intent-to-treat study in 115 East African infants. Journal of Neurosurgery: Pediatrics, 2(5), 310316.Google ScholarPubMed
Warf, B., Ondoma, S., Kulkami, A., Donnelly, R., Ampiere, M., Akona, J., … Nsubuga, B. K. (2009). Neurocognitive outcome and ventricular volume in children with myelomeningocele treated for hydrocephalus in Uganda. Journal of Neurosurgery: Pediatrics, 4(6), 564570.Google ScholarPubMed
Wasserman, R. M., Stoner, A. M., Stern, A. & Holmbeck, G. N. (2016). ADHD and attention problems in children with and without spina bifida. Topics in Spinal Cord Injury Rehabilitation, 22(4): 253259. doi: 10.1310/sci2204-253CrossRefGoogle ScholarPubMed
Wechsler, D. (2014). Wechsler Intelligence Scale for Children(5th ed.). Bloomington, MN: Pearson Clinical.Google Scholar
Williams, V. J., Juranek, J., Stuebing, K., Cirino, P. T., Dennis, M., & Fletcher, J. M. (2013). Examination of frontal and parietal tectocortical attention pathways in spina bifida meningomyelocele using probabilistic diffusion tractography. Brain Connectivity, 3(5), 512522.CrossRefGoogle ScholarPubMed
Wilson, B. A., Cockburn, J., & Baddeley, A. D. (2003). The Rivermead Behavioural Memory Test (2nd ed.). London: Pearson Assessment.Google Scholar
Wilson, B. A., Emslie, H., Foley, J., Shiel, A., Watson, P., Hawkins, K., … Evans, J. J. (2005). The Cambridge Prospective Memory Test (CAMPROMPT). London: Harcourt Assessment.Google Scholar
Yeates, K. O., Fletcher, J. M., & Dennis, M. (2008). Spina bifida and hydrocephalus. In Morgan, J. E. & Ricker, J. H. (Eds.), Textbook of clinical neuropsychology (pp. 128148). New York, NY: Psychology Press.Google Scholar
Zabel, T. A., Jacobson, L. A., Tarazi, R., & Mahone, E. M. (2012). The Kennedy Krieger independence scale–Spina bifida version (KKIS-SB). Baltimore, MD: The Kennedy Krieger Institute.Google Scholar
Zabel, T. A., Jacobson, L., Zachik, C., Levey, E., Kinsman, S., & Mahone, E. (2011). Parent and self-ratings of executive functions in adolescents and young adults with spina bifida. The Clinical Neuropsychologist, 25(6), 926941.CrossRefGoogle Scholar
Zebracki, K., Zaccariello, M., Zelko, F., Holmbeck, G. (2010). Adolescence and emerging adulthood in individuals with spina bifida: a developmental neuropsychological perspective. In Donders, J., & Hunter, S. J. (Eds.), Principles and practice of lifespan developmental neuropsychology. Cambridge, MA: Cambridge University Press.Google Scholar
Zukerman, J. M., Devine, K. A., & Holmbeck, G. N. (2011). Adolescent predictors of emerging adulthood milestones in youth with spina bifida. Journal of Pediatric Psychology, 36(3), 265276. doi: 10.1093/jpepsy/jsq075CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×