Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T13:05:18.503Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 July 2017

Richard J. Haier
Affiliation:
University of California, Irvine
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, P. L., Beier, M. E. & Boyle, M. O. (2005). Working memory and intelligence: The same or different constructs? Psychological Bulletin, 131, 3060.CrossRefGoogle ScholarPubMed
Alkire, M. T. & Haier, R. J. (2001). Correlating in vivo anaesthetic effects with ex vivo receptor density data supports a GABAergic mechanism of action for propofol, but not for isoflurane. British Journal of Anaesthesiology, 86, 618626.Google Scholar
Alkire, M. T., Haier, R. J., Barker, S. J., Shah, N. K., Wu, J. C. & Kao, Y. J. (1995). Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology, 82, 393403; discussion 27A.Google Scholar
Alkire, M. T., Haier, R. J. & Fallon, J. H. (2000). Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Consciousness and Cognition, 9, 370386.Google Scholar
Alkire, M. T., Pomfrett, C. J. D., Haier, R. J., Gianzero, M. V., Chan, C. M., Jacobsen, B. P. & Fallon, J. H. (1999). Functional brain imaging during anesthesia in humans – effects of halothane on global and regional cerebral glucose metabolism. Anesthesiology, 90, 701709.Google Scholar
Anderson, D. J. (2012). Optogenetics, sex, and violence in the brain: implications for psychiatry. Biological Psychiatry, 71, 10811089.Google Scholar
Anderson, J. W., Johnstone, B. M. & Remley, D. T. (1999). Breast-feeding and cognitive development: a meta-analysis. American Journal of Clinical Nutrition, 70, 525535.Google Scholar
Andreasen, N. C., Flaum, M., Swayze, V., O’Leary, D. S., Alliger, R., Cohen, G., Ehrhardt, J. & Yuh, W. T. (1993). Intelligence and brain structure in normal individuals. American Journal of Psychiatry, 150, 130134.Google ScholarPubMed
Ángeles Quiroga, M., Escorial, S., Román, F. J., Morillo, D., Jarabo, A., Privado, J., Hernández, M., Gallego, B. & Colom, R. (2015). Can we reliably measure the general factor of intelligence (g) through commercial video games? Yes, we can! Intelligence, 53, 17.Google Scholar
Arden, R. (2003). An Arthurian romance. In Nyborg, H. (Ed.), The Scientific Study of General Intelligence, Oxford: Pergamon Press.Google Scholar
Arden, R., Chavez, R. S., Grazioplene, R. & Jung, R. E. (2010). Neuroimaging creativity: a psychometric view. Behavior and Brain Research, 214, 143156.Google Scholar
Arden, R., Luciano, M., Deary, I. J., Reynolds, C. A., Pedersen, N. L., Plassman, B. L., McGue, M., Christensen, K. & Visscher, P. M.(2015). The association between intelligence and lifespan is mostly genetic. International Journal of Epidemiology, 45, 178–185.Google Scholar
Asbury, K. & Plomin, R. (2014). G is for Genes: The Impact of Genetics on Education and Achievement, Chichester: Wiley-Blackwell.Google Scholar
Asbury, K., Wachs, T. D. & Plomin, R. (2005). Environmental moderators of genetic influence on verbal and nonverbal abilities in early childhood. Intelligence, 33, 643661.Google Scholar
Ashburner, J. & Friston, K. (1997). Multimodal image coregistration and partitioning – a unified framework. Neuroimage, 6, 209217.CrossRefGoogle ScholarPubMed
Ashburner, J. & Friston, K. J. (2000). Voxel-based morphometry – the methods. Neuroimage, 11, 805821.Google Scholar
Aston-Jones, G. & Deisseroth, K. (2013). Recent advances in optogenetics and pharmacogenetics. Brain Research, 1511, 15.Google Scholar
Atherton, M., Zhuang, J. C., Bart, W. M., Hu, X. P. & He, S. (2003). A functional MRI study of high-level cognition. I. The game of chess. Cognitive Brain Research, 16, 2631.CrossRefGoogle ScholarPubMed
Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M. & Jaeggi, S. M. (2015). Improving fluid intelligence with training on working memory: a meta-analysis. Psychonomic Bulletin and Review, 22, 366377.Google Scholar
Bagot, K. S. & Kaminer, Y. (2014). Efficacy of stimulants for cognitive enhancement in non-attention deficit hyperactivity disorder youth: a systematic review. Addiction, 109, 547557.Google Scholar
Barbey, A. K., Colom, R., Paul, E., Forbes, C., Krueger, F., Goldman, D. & Grafman, J. (2014). Preservation of general intelligence following traumatic brain injury: contributions of the Met66 brain-derived neurotrophic factor. PLoS ONE, 9, e88733.Google Scholar
Barnett, W. S. & Hustedt, J. T. (2005). Head start’s lasting benefits. Infants and Young Children, 18, 1624.Google Scholar
Bassett, D. S., Yang, M., Wymbs, N. F. & Grafton, S. T. (2015). Learning-induced autonomy of sensorimotor systems. Nature Neuroscience, 18, 744751.Google Scholar
Basso, A., De Renzi, E., Faglioni, P., Scotti, G. & Spinnler, H. (1973). Neuropsychological evidence for the existence of cerebral areas critical to the performance of intelligence tasks. Brain, 96, 715–28.Google Scholar
Basten, U., Hilger, K. & Fiebach, C. J. (2015). Where smart brains are different: a quantitative meta-analysis of functional and structural brain imaging studies on intelligence. Intelligence, 51, 1027.CrossRefGoogle Scholar
Basten, U., Stelzel, C. & Fiebach, C. J. (2013). Intelligence is differentially related to neural effort in the task-positive and the task-negative brain network. Intelligence, 41, 517528.Google Scholar
Bates, T. C., Lewis, G. J. & Weiss, A. (2013). Childhood socioeconomic status amplifies genetic effects on adult intelligence. Psychological Science, 24, 21112116.Google Scholar
Batty, G. D., Deary, I. J. & Gottfredson, L. S. (2007). Premorbid (early life) IQ and later mortality risk: systematic review. Annals of Epidemiology, 17, 278288.Google Scholar
Beaty, R. E. (2015). The neuroscience of musical improvisation. Neuroscience and Biobehavioral Reviews, 51, 108117.Google Scholar
Bejjanki, V. R., Zhang, R., Li, R., Pouget, A., Green, C. S., Lu, Z. L. & Bavelier, D. (2014). Action video game play facilitates the development of better perceptual templates. Proceedings of the National Academy of Sciences of the United States of America, 111, 1696116966.Google Scholar
Bengtsson, S. L., Csikszentmihalyi, M. & Ullen, F. (2007). Cortical regions involved in the generation of musical structures during improvisation in pianists. Journal of Cognitive Neuroscience, 19, 830842.CrossRefGoogle ScholarPubMed
Benyamin, B., Pourcain, B., Davis, O. S., Davies, G., Hansell, N. K., Brion, M. J., et al. (2014). Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Molecular Psychiatry, 19, 253258.CrossRefGoogle ScholarPubMed
Berkowitz, A. L. & Ansari, D. (2010). Expertise-related deactivation of the right temporoparietal junction during musical improvisation. Neuroimage, 49, 712719.Google Scholar
Bishop, S. J., Fossella, J., Croucher, C. J. & Duncan, J. (2008). COMT val158met genotype affects recruitment of neural mechanisms supporting fluid intelligence. Cerebral Cortex, 18, 21322140.Google Scholar
Bogg, T. & Lasecki, L. (2015). Reliable gains? Evidence for substantially underpowered designs in studies of working memory training transfer to fluid intelligence. Frontiers in Psychology, 5, 1589.Google Scholar
Bohlken, M. M., Brouwer, R. M., Mandl, R. C., Van Haren, N. E., Brans, R. G., Van Baal, G. C., et al. (2014). Genes contributing to subcortical volumes and intellectual ability implicate the thalamus. Human Brain Mapping, 35, 26322642.CrossRefGoogle ScholarPubMed
Boivin, M. J., Giordani, B., Berent, S., Amato, D. A., Lehtinen, S., Koeppe, R. A., Buchtel, H. A., Foster, N. L. & Kuhl, D. E. (1992). Verbal fluency and positron emission tomographic mapping of regional cerebral glucose metabolism. Cortex, 28, 231239.Google Scholar
Bouchard, T. J. (2009). Genetic influence on human intelligence (Spearman’s g): how much? Annals of Human Biology, 36, 527544.Google Scholar
Bouchard, T. J., Jr. (1998). Genetic and environmental influences on adult intelligence and special mental abilities. Human Biology, 70, 257279.Google Scholar
Bouchard, T. J., & McGue, M. (1981). Familial studies of intelligence: a review. Science, 212, 10551059.Google Scholar
Brans, R. G. H., Kahn, R. S., Schnack, H. G., Van Baal, G. C. M., Posthuma, D., Van Haren, N. E. M., et al. (2010). Brain plasticity and intellectual ability are influenced by shared genes. Journal of Neuroscience, 30, 55195524.Google Scholar
Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues, Leipzig: Barth.Google Scholar
Burgaleta, M. & Colom, R. (2008). Short-term storage and mental speed account for the relationship between working memory and fluid intelligence. Psicothema, 20, 780785.Google Scholar
Burgaleta, M., MacDonald, P. A., Martinez, K., Roman, F. J., Alvarez-Linera, J., Gonzalez, A. R., Karama, S. & Colom, R. (2014). Subcortical regional morphology correlates with fluid and spatial intelligence. Human Brain Mapping, 35, 19571968.Google Scholar
Burt, C. (1943). Ability and income. British Journal of Educational Psychology, 13, 8398.CrossRefGoogle Scholar
Burt, C. (1955). The evidence for the concept of intelligence. British Journal of Educational Psychology, 25, 158177.Google Scholar
Burt, C. (1966). The genetic determination of differences in intelligence – a study of monozygotic twins reared together and apart. British Journal of Psychology, 57, 137153.Google Scholar
Cabeza, R. & Nyberg, L. (2000). Imaging cognition II: an empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 147.CrossRefGoogle Scholar
Cajal, R. S. (1924). Pensamientos Escogidos [Chosen Thoughts], Madrid: Cuadernos Literarios.Google Scholar
Campbell, F. A., Pungello, E., Miller-Johnson, S., Burchinal, M. & Ramey, C. T. (2001). The development of cognitive and academic abilities: growth curves from an early childhood educational experiment. Developmental Psychology, 37, 231242.Google Scholar
Cardoso-Leite, P. & Bavelier, D. (2014). Video game play, attention, and learning: how to shape the development of attention and influence learning? Current Opinions in Neurology, 27, 185191.Google Scholar
Cattell, R. B. (1971). Abilities: Their Structure, Growth, and Action, Boston: Houghton Mifflin.Google Scholar
Cattell, R. B. (1987). Intelligence: Its Structure, Growth, and Action, Amsterdam: Elsevier.Google Scholar
Ceci, S. J. (1991). How much does schooling influence general intelligence and its cognitive components – a reassessment of the evidence. Developmental Psychology, 27, 703722.Google Scholar
Ceci, S. J. & Williams, W. M. (1997). Schooling, intelligence, and income. American Psychologist, 52, 10511058.CrossRefGoogle Scholar
Chabris, C. F. (1999). Prelude or requiem for the “Mozart effect”? Nature, 400, 826827.Google Scholar
Chabris, C. F., Hebert, B. M., Benjamin, D. J., Beauchamp, J., Cesarini, D., Van Der Loos, M., et al. (2012). Most reported genetic associations with general intelligence are probably false positives. Psychological Science, 23, 13141323.Google Scholar
Champagne, F. A. & Curley, J. P. (2009). Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neuroscience and Biobehavioral Reviews, 33, 593600.Google Scholar
Chiang, M. C., Barysheva, M., McMahon, K. L., De Zubicaray, G. I., Johnson, K., Montgomery, G. W., et al. (2012). Gene network effects on brain microstructure and intellectual performance identified in 472 twins. Journal of Neuroscience, 32, 87328745.Google Scholar
Chiang, M. C., Barysheva, M., Shattuck, D. W., Lee, A. D., Madsen, S. K., Avedissian, C., et al. (2009). Genetics of brain fiber architecture and intellectual performance. Journal of Neuroscience, 29, 22122224.Google Scholar
Chiang, M. C., Barysheva, M., Toga, A. W., Medland, S. E., Hansell, N. K., James, M. R., et al. (2011a). BDNF gene effects on brain circuitry replicated in 455 twins. Neuroimage, 55, 448454.CrossRefGoogle ScholarPubMed
Chiang, M. C., McMahon, K. L., De Zubicaray, G. I., Martin, N. G., Hickie, I., Toga, A. W., Wright, M. J. & Thompson, P. M. (2011b). Genetics of white matter development: a DTI study of 705 twins and their siblings aged 12 to 29. Neuroimage, 54, 23082317.Google Scholar
Choi, Y. Y., Shamosh, N. A., Cho, S. H., DeYoung, C. G., Lee, M. J., Lee, J. M., Kim, S. I., Cho, Z. H., Kim, K., Gray, J. R. & Lee, K. H. (2008). Multiple bases of human intelligence revealed by cortical thickness and neural activation. Journal of Neuroscience, 28, 1032310329.Google Scholar
Chooi, W. T. & Thompson, L. A. (2012). Working memory training does not improve intelligence in healthy young adults. Intelligence, 40, 531542.Google Scholar
Chugani, H. T., Phelps, M. E. & Mazziotta, J. C. (1987). Positron emission tomography study of human brain functional development. Annals of Neurology, 22, 487497.Google Scholar
Clark, V. P., Coffman, B. A., Mayer, A. R., Weisend, M. P., Lane, T. D., Calhoun, V. D., Raybourn, E. M., Garcia, C. M. & Wassermann, E. M. (2012). TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage, 59, 117128.Google Scholar
Coffman, B. A., Clark, V. P. & Parasuraman, R. (2014). Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage, 85(Pt 3), 895908.Google Scholar
Cole, M. W., Yarkoni, T., Repovs, G., Anticevic, A. & Braver, T. S. (2012). Global connectivity of prefrontal cortex predicts cognitive control and intelligence. Journal of Neuroscience, 32, 89888999.Google Scholar
Colom, R., Abad, F. J., Quiroga, M. A., Shih, P. C. & Flores-Mendoza, C. (2008). Working memory and intelligence are highly related constructs, but why? Intelligence, 36, 584606.Google Scholar
Colom, R. & Flores-Mendoza, C. E. (2007). Intelligence predicts scholastic achievement irrespective of SES factors: evidence from Brazil. Intelligence, 35, 243251.Google Scholar
Colom, R., Jung, R. E. & Haier, R. J. (2006a). Distributed brain sites for the g-factor of intelligence. Neuroimage, 31, 13591365.CrossRefGoogle ScholarPubMed
Colom, R., Jung, R. E. (2006b). Finding the g-factor in brain structure using the method of correlated vectors. Intelligence, 34, 561.CrossRefGoogle Scholar
Colom, R., Jung, R. E. (2007). General intelligence and memory span: evidence for a common neuroanatomic framework. Cognitive Neuropsychology, 24, 867878.Google Scholar
Colom, R., Karama, S., Jung, R. E. & Haier, R. J. (2010). Human intelligence and brain networks. Dialogues in Clinical Neuroscience, 12, 489501.Google Scholar
Colom, R., Rebollo, I., Palacios, A., Juan-Espinosa, M. & Kyllonen, P. C. (2004). Working memory is (almost) perfectly predicted by g. Intelligence, 32, 277296.Google Scholar
Colom, R., Roman, F. J., Abad, F. J., Shih, P. C., Privado, J., Froufe, M., et al. (2013). Adaptive n-back training does not improve fluid intelligence at the construct level: gains on individual tests suggest that training may enhance visuospatial processing. Intelligence, 41, 712727.Google Scholar
Conway, A. R. A., Kane, M. J. & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7, 547552.Google Scholar
Covington, H. E., 3rd, Lobo, M. K., Maze, I., Vialou, V., Hyman, J. M., Zaman, S., Laplant, Q., Mouzon, E., Ghose, S., Tamminga, C. A., Neve, R. L., Deisseroth, K. & Nestler, E. J. (2010). Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. Journal of Neuroscience, 30, 1608216090.Google Scholar
Crick, F. (1994). The Astonishing Hypothesis: The Scientific Search for the Soul, New York: Scribner, Maxwell Macmillan International.Google Scholar
Curlik, D. M., 2nd, Maeng, L. Y., Agarwal, P. R. & Shors, T. J. (2013). Physical skill training increases the number of surviving new cells in the adult hippocampus. PLoS ONE, 8, e55850.Google Scholar
Curlik, D. M., Curlik, D. M., 2nd & Shors, T. J. (2013). Training your brain: do mental and physical (MAP) training enhance cognition through the process of neurogenesis in the hippocampus? Neuropharmacology, 64, 506514.CrossRefGoogle ScholarPubMed
Davies, G., Armstrong, N., Bis, J. C., Bressler, J., Chouraki, V., Giddaluru, S., et al. (2015). Genetic contributions to variation in general cognitive function: a meta-analysis of genome-wide association studies in the CHARGE consortium (N=53949). Molecular Psychiatry, 20, 183192.Google Scholar
Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., et al. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16, 9961005.Google Scholar
Davis, J. M., Searles, V. B., Anderson, N., Keeney, J., Raznahan, A., Horwood, L. J., Fergusson, D. M., Kennedy, M. A., Giedd, J. & Sikela, J. M. (2015). DUF1220 copy number is linearly associated with increased cognitive function as measured by total IQ and mathematical aptitude scores. Human Genetics, 134, 6775.Google Scholar
Deary, I. J. (2000). Looking Down on Human Intelligence: From Psychometrics to the Brain, Oxford: Oxford University Press.Google Scholar
Deary, I. J., Penke, L. & Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Reviews Neuroscience, 11, 201211.Google Scholar
Deary, I. J., Whiteman, M. C., Starr, J. M., Whalley, L. J. & Fox, H. C. (2004). The impact of childhood intelligence on later life: following up the Scottish Mental Surveys of 1932 and 1947. Journal of Personality and Social Psychology, 86, 130147.CrossRefGoogle ScholarPubMed
Del Río, D., Cuesta, P., Bajo, R., García-Pacios, J., López-Higes, R., Del-Pozo, F. & Maestú, F. (2012). Efficiency at rest: magnetoencephalographic resting-state connectivity and individual differences in verbal working memory. International Journal of Psychophysiology, 86, 160167.Google Scholar
Der, G., Batty, G. D. & Deary, I. J. (2006). Effect of breast feeding on intelligence in children: prospective study, sibling pairs analysis, and meta-analysis. British Medical Journal, 333, 945.CrossRefGoogle ScholarPubMed
Desrivieres, S., Lourdusamy, A., Tao, C., Toro, R., Jia, T., Loth, E., et al. (2015). Single nucleotide polymorphism in the neuroplastin locus associates with cortical thickness and intellectual ability in adolescents. Molecular Psychiatry, 20, 263274.CrossRefGoogle ScholarPubMed
Detterman, D. K. (2014). Introduction to the intelligence special issue on the development of expertise: is ability necessary? Intelligence, 45, 15.Google Scholar
Dietrich, A. & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136, 822848.Google Scholar
Donnay, G. F., Rankin, S. K., Lopez-Gonzalez, M., Jiradejvong, P. & Limb, C. J. (2014). Neural substrates of interactive musical improvisation: an FMRI study of ‘trading fours’ in jazz. PLoS ONE, 9, e88665.Google Scholar
Drury, S. S., Theall, K., Gleason, M. M., Smyke, A. T., De Vivo, I., Wong, J. Y., Fox, N. A., Zeanah, C. H. & Nelson, C. A. (2012). Telomere length and early severe social deprivation: linking early adversity and cellular aging. Molecular Psychiatry, 17, 719727.CrossRefGoogle ScholarPubMed
Duncan, G. J. & Sojourner, A. J. (2013). Can intensive early childhood intervention programs eliminate income-based cognitive and achievement gaps? Journal of Human Resources, 48, 945968.CrossRefGoogle ScholarPubMed
Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14, 172179.Google Scholar
Duncan, J., Burgess, P. & Emslie, H. (1995). Fluid intelligence after frontal lobe lesions. Neuropsychologia, 33, 261268.CrossRefGoogle ScholarPubMed
Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., Newell, F. N. & Emslie, H. (2000). A neural basis for general intelligence. Science, 289, 457460.Google Scholar
Ericsson, K. A. (2014). Why expert performance is special and cannot be extrapolated from studies of performance in the general population: a response to criticisms. Intelligence, 45, 81103.Google Scholar
Esposito, G., Kirkby, B. S., Van Horn, J. D., Ellmore, T. M. & Berman, K. F. (1999). Context-dependent, neural system-specific neurophysiological concomitants of ageing: mapping PET correlates during cognitive activation. Brain, 122, 963979.Google Scholar
Ezkurdia, I., Juan, D., Rodriguez, J. M., Frankish, A., Diekhans, M., Harrow, J., Vazquez, J., Valencia, A. & Tress, M. L. (2014). Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Human Molecular Genetics, 23, 58665878.CrossRefGoogle Scholar
Falk, D., Lepore, F. E. & Noe, A. (2013). The cerebral cortex of Albert Einstein: a description and preliminary analysis of unpublished photographs. Brain, 136, 13041327.Google Scholar
Fangmeier, T., Knauff, M., Ruff, C. C. & Sloutsky, V. M. (2006). fMRI evidence for a three-stage model of deductive reasoning. Journal of Cognitive Neuroscience, 18, 320334.Google Scholar
Farah, M. J., Betancourt, L., Shera, D. M., Savage, J. H., Giannetta, J. M., Brodsky, N. L., Malmud, E. K. & Hurt, H. (2008). Environmental stimulation, parental nurturance and cognitive development in humans. Developmental Science, 11, 793801.CrossRefGoogle ScholarPubMed
Farah, M. J., Smith, M. E., Ilieva, I. & Hamilton, R. H. (2014). Cognitive enhancement. Wiley Interdisciplinary Reviews – Cognitive Science, 5, 95103.Google Scholar
Ferrer, E., O’Hare, E. D. & Bunge, S. A. (2009). Fluid reasoning and the developing brain. Frontiers in Neuroscience, 3, 4651.Google Scholar
Fink, A., Grabner, R. H., Gebauer, D., Reishofer, G., Koschutnig, K. & Ebner, F. (2010). Enhancing creativity by means of cognitive stimulation: evidence from an fMRI study. Neuroimage, 52, 16871695.Google Scholar
Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., Papademetris, X. & Constable, R. T. (2015). Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18, 16641671.CrossRefGoogle ScholarPubMed
Firkowska, A., Ostrowska, A., Sokolowska, M., Stein, Z., Susser, M. & Wald, I. (1978). Cognitive development and social policy. Science, 200, 13571362.Google Scholar
Flashman, L. A., Andreasen, N. C., Flaum, M. & Swayze, V. W. (1997). Intelligence and regional brain volumes in normal controls. Intelligence, 25, 149160.Google Scholar
Flynn, J. R. (2013). The “Flynn Effect” and Flynn’s paradox. Intelligence, 41, 851857.Google Scholar
Frangou, S., Chitins, X. & Williams, S. C. R. (2004). Mapping IQ and gray matter density in healthy young people. Neuroimage, 23, 800805.Google Scholar
Fregnac, Y. & Laurent, G. (2014). Neuroscience: where is the brain in the Human Brain Project? Nature, 513, 2729.Google Scholar
Frey, M. C. & Detterman, D. K. (2004). Scholastic assessment or g? The relationship between the scholastic assessment test and general cognitive ability. Psychological Science, 15, 373378; erratum 15, 641.Google Scholar
Galaburda, A. M. (1999). Albert Einstein’s brain. Lancet, 354, 1821; author reply 1822.Google Scholar
Galton, F. (1869). Hereditary Genius: An Inquiry into its Laws and Consequences, London: Macmillan.Google Scholar
Galton, F. (2006). Hereditary Genius: An Inquiry into its Laws and Consequences, Amherst, NY: Prometheus Books.Google Scholar
Galton, F. & Prinzmetal, M. (1884). Hereditary Genius: An Inquiry into its Laws and Consequences, New York, NY: D. Appleton and Company.Google Scholar
Gardner, H. (1987). The theory of multiple intelligences. Annals of Dyslexia, 37, 1935.Google Scholar
Gardner, H. & Moran, S. (2006). The science of multiple intelligences theory: a response to Lynn Waterhouse. Educational Psychologist, 41, 227232.CrossRefGoogle Scholar
Geake, J. (2008). Neuromythologies in education. Educational Research, 50, 123133.CrossRefGoogle Scholar
Geake, J. (2011). Position statement on motivations, methodologies, and practical implications of educational neuroscience research: fMRI studies of the neural correlates of creative intelligence. Educational Philosophy and Theory, 43, 4347.Google Scholar
Geake, J. G. & Hansen, P. C. (2005). Neural correlates of intelligence as revealed by fMRI of fluid analogies. Neuroimage, 26, 555564.Google Scholar
Ghatan, P. H., Hsieh, J. C., Wirsén-Meurling, A., Wredling, R., Eriksson, L., Stone-Elander, S., Levander, S. & Ingvar, M. (1995). Brain activation-induced by the perceptual maze test: a PET study of cognitive performance. Neuroimage, 2, 112124.Google Scholar
Gignac, G. E. (2015). Raven’s is not a pure measure of general intelligence: implications for g factor theory and the brief measurement of g. Intelligence, 52, 7179.Google Scholar
Glascher, J., Rudrauf, D., Colom, R., Paul, L. K., Tranel, D., Damasio, H. & Adolphs, R. (2010). Distributed neural system for general intelligence revealed by lesion mapping. Proceedings of the National Academy of Sciences of the United States of America, 107, 47054709.CrossRefGoogle ScholarPubMed
Glascher, J., Tranel, D., Paul, L. K., Rudrauf, D., Rorden, C., Hornaday, A., Grabowski, T., Damasio, H. & Adolphs, R. (2009). Lesion mapping of cognitive abilities linked to intelligence. Neuron, 61, 681691.Google Scholar
Goel, V. & Dolan, R. J. (2004). Differential involvement of left prefrontal cortex in inductive and deductive reasoning. Cognition, 93, B109B121.Google Scholar
Goel, V., Gold, B., Kapur, S. & Houle, S. (1997). The seats of reason? An imaging study of deductive and inductive reasoning. Neuroreport, 8, 13051310.Google Scholar
Goel, V., Gold, B., Kapur, S. (1998). Neuroanatomical correlates of human reasoning. Journal of Cognitive Neuroscience, 10, 293302.Google Scholar
Gonen-Yaacovi, G., De Souza, L. C., Levy, R., Urbanski, M., Josse, G. & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: a meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 465.Google Scholar
Gong, Q.-Y., Sluming, V., Mayes, A., Keller, S., Barrick, T., Cezayirli, E. & Roberts, N. (2005). Voxel-based morphometry and stereology provide convergent evidence of the importance of medial prefrontal cortex for fluid intelligence in healthy adults. Neuroimage, 25, 1175.Google Scholar
Gonzalez-Lima, F. & Barrett, D. W. (2014). Augmentation of cognitive brain functions with transcranial lasers. Frontiers in Systems Neuroscience, 8, 36.Google Scholar
Gottfredson, L. S. (1997a). Mainstream science on intelligence: an editorial with 52 signatories, history, and bibliography (reprinted from The Wall Street Journal, 1994). Intelligence, 24, 1323.Google Scholar
Gottfredson, L. S. (1997b). Why g matters: the complexity of everyday life. Intelligence, 24, 79132.Google Scholar
Gottfredson, L. S. (2002). Where and why g matters: not a mystery. Human Performance, 15, 2546.Google Scholar
Gottfredson, L. S. (2003a). Dissecting practical intelligence theory: its claims and evidence. Intelligence, 31, 343397.Google Scholar
Gottfredson, L. S. (2003b). g, jobs and life. In Nyborg, H. (Ed.), The Scientific Study of General Intelligence. New York, NY: Elsevier Science.Google Scholar
Gottfredson, L. S. (2005). Suppressing intelligence research: hurting those we intend to help. In Wright, R. C. & Cummings, N. A. (Eds.), Destructive Trends in Mental Health: The Well-intentioned Path to Harm. New York, NY: Routledge.Google Scholar
Gozli, D. G., Bavelier, D. & Pratt, J. (2014). The effect of action video game playing on sensorimotor learning: evidence from a movement tracking task. Human Movement Science, 38C, 152162.Google Scholar
Grabner, R. H. (2014). The role of intelligence for performance in the prototypical expertise domain of chess. Intelligence, 45, 2633.Google Scholar
Grabner, R. H., Stern, E. & Neubauer, A. C. (2007). Individual differences in chess expertise: a psychometric investigation. Acta Psychologica, 124, 398420.Google Scholar
Graham, S., Jiang, J., Manning, V., Nejad, A. B., Zhisheng, K., Salleh, S. R., Golay, X., Berne, Y. I. & McKenna, P. J. (2010). IQ-related fMRI differences during cognitive set shifting. Cerebral Cortex, 20, 641649.Google Scholar
Gray, J. R., Chabris, C. F. & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316322.Google Scholar
Greely, H., Sahakian, B., Harris, J., Kessler, R. C., Gazzaniga, M., Campbell, P. & Farah, M. J. (2008). Towards responsible use of cognitive-enhancing drugs by the healthy. Nature, 456, 702705.CrossRefGoogle ScholarPubMed
Green, A. E., Kraemer, D. J., Fugelsang, J. A., Gray, J. R. & Dunbar, K. N. (2012). Neural correlates of creativity in analogical reasoning. Journal of Experimental Psychology. Learning, Memory and Cognition, 38, 264272.Google Scholar
Gur, R. C., Ragland, J. D., Resnick, S. M., Skolnick, B. E., Jaggi, J., Muenz, L. & Gur, R. E. (1994). Lateralized increases in cerebral blood flow during performance of verbal and spatial tasks: relationship with performance-level. Brain and Cognition, 24, 244258.Google Scholar
Haasz, J., Westlye, E. T., Fjaer, S., Espeseth, T., Lundervold, A. & Lundervold, A. J. (2013). General fluid-type intelligence is related to indices of white matter structure in middle-aged and old adults. Neuroimage, 83, 372383.Google Scholar
Hackman, D. A., Farah, M. J. & Meaney, M. J. (2010). Socioeconomic status and the brain: mechanistic insights from human and animal research. Nature Reviews Neuroscience, 11, 651659.Google Scholar
Haggarty, P., Hoad, G., Harris, S. E., Starr, J. M., Fox, H. C., Deary, I. J. & Whalley, L. J. (2010). Human intelligence and polymorphisms in the DNA methyltransferase genes involved in epigenetic marking. PLoS ONE, 5, e11329.Google Scholar
Haier, R. J. (1990). The end of intelligence research. Intelligence, 14, 371374.Google Scholar
Haier, R. J. (2009a). Neuro-intelligence, neuro-metrics and the next phase of brain imaging studies. Intelligence, 37, 121123.Google Scholar
Haier, R. J. (2009b). What does a smart brain look like? Scientific American Mind, Nov/Dec, 2633.Google Scholar
Haier, R. J. (2013). The Intelligent Brain. The Great Courses Company.Google Scholar
Haier, R. J. (2014). Increased intelligence is a myth (so far). Frontiers in Systems Neuroscience, 8, 34.Google Scholar
Haier, R. J. & Benbow, C. P. (1995). Sex differences and lateralization in temporal lobe glucose metabolism during mathematical reasoning. Developmental Neuropsychology, 11, 405414.Google Scholar
Haier, R. J., Chueh, D., Touchette, P., Lott, I., et al. (1995) Brain size and cerebral glucose metabolic rate in nonspecific mental retardation and Down syndrome. Intelligence, 20, 191210.Google Scholar
Haier, R. J., Colom, R., Schroeder, D. H., Condon, C. A., Tang, C., Eaves, E. & Head, K. (2009). Gray matter and intelligence factors: is there a neuro-g? Intelligence, 37, 136144.CrossRefGoogle Scholar
Haier, R. J., Jung, R. E., Yeo, R. A., Head, K. & Alkire, M. T. (2004). Structural brain variation and general intelligence. Neuroimage, 23, 425433.Google Scholar
Haier, R. J., Jung, R. E., Yeo, R. A., Head, K. & Alkire, M. T. (2005). The neuroanatomy of general intelligence: sex matters. Neuroimage, 25, 320327.Google Scholar
Haier, R. J. & Jung, R. E. (2007). Beautiful minds (i.e., brains) and the neural basis of intelligence. Behavioral and Brain Sciences, 30, 174178.Google Scholar
Haier, R. J. & Jung, R. E. (2008). Brain imaging studies of intelligence and creativity – what is the picture for education? Roeper Review, 30, 171180.Google Scholar
Haier, R. J., Robinson, D. L., Braden, W. & Williams, D. (1983). Electrical potentials of the cerebral cortex and psychometric intelligence. Personality & Individual Differences, 4, 591599.Google Scholar
Haier, R. J., Siegel, B., Tang, C., Abel, L. & Buchsbaum, M. S. (1992a). Intelligence and changes in regional cerebral glucose metabolic-rate following learning. Intelligence, 16, 415426.Google Scholar
Haier, R. J., Siegel, B. V., Jr., Crinella, F. M. & Buchsbaum, M. S. (1993). Biological and psychometric intelligence: testing an animal model in humans with positron emission tomography. In Douglas, Detterman, (Ed.), Individual Differences and Cognition. New York, NY: Ablex Publishing Corp.Google Scholar
Haier, R.J., Siegel, B.V., Jr., MacLachlan, A., Soderling, E., Lottenberg, S. & Buchsbaum, M. S. (1992b). Regional glucose metabolic changes after learning a complex visuospatial/motor task: a positron emission tomographic study. Brain Research, 570, 134143.Google Scholar
Haier, R. J., Siegel, B. V., Jr., Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., Browning, H. L. & Buchsbaum, M. S. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12, 199217.Google Scholar
Haier, R. J., White, N. S. & Alkire, M. T. (2003). Individual differences in general intelligence correlate with brain function during nonreasoning tasks. Intelligence, 31, 429441.Google Scholar
Halpern, D. F., Benbow, C. P., Geary, D. C., Gur, R. C., Hyde, J. S. & Gernsbacher, M. A. (2007). The science of sex differences in science and mathematics. Psychological Science in the Public Interest, 8, 151.Google Scholar
Halstead, W. C. (1947). Brain and Intelligence; A Quantitative Study of the Frontal Lobes, Chicago, IL: University of Chicago Press.Google Scholar
Hampshire, A., Thompson, R., Duncan, J. & Owen, A. M. (2011). Lateral prefrontal cortex subregions make dissociable contributions during fluid reasoning. Cerebral Cortex, 21, 110.Google Scholar
Hanscombe, K. B., Trzaskowski, M., Haworth, C. M. A., Davis, O. S. P., Dale, P. S. & Plomin, R. (2012). Socioeconomic status (SES) and children’s intelligence (IQ): in a UK-representative sample SES moderates the environmental, not genetic, effect on IQ. PloS ONE, 7, e30320.Google Scholar
Harrison, T. L., Shipstead, Z., Hicks, K. L., Hambrick, D. Z., Redick, T. S. & Engle, R. W. (2013). Working memory training may increase working memory capacity but not fluid intelligence. Psychological Science, 24, 24092419.Google Scholar
Hartshorne, J. K. & Germine, L. T. (2015). When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span. Psychological Science, 26, 433443.CrossRefGoogle ScholarPubMed
Hawkins, J. & Blakeslee, S. (2004). On Intelligence, New York, NY: Times Books.Google Scholar
Haworth, C. M. A., Wright, M. J., Luciano, M., Martin, N. G., De Geus, E. J. C., Van Beijsterveldt, C. E. M., et al. (2010). The heritability of general cognitive ability increases linearly from childhood to young adulthood. Molecular Psychiatry, 15, 11121120.Google Scholar
Hayes, T. R., Petrov, A. A. & Sederberg, P. B. (2015). Do we really become smarter when our fluid-intelligence test scores improve? Intelligence, 48, 114.Google Scholar
Heishman, S. J., Kleykamp, B. A. & Singleton, E. G. (2010). Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacology (Berlin), 210, 453469.Google Scholar
Herrnstein, R. J. (1973) I.Q. in the Meritocracy, Boston, MA: Little.Google Scholar
Herrnstein, R. J. & Murray, C. A. (1994). The Bell Curve: Intelligence and Class Structure in American Life, New York, NY: Free Press.Google Scholar
Heyward, F. D. & Sweatt, J. D. (2015). DNA methylation in memory formation: emerging insights. Neuroscientist, 24, 475489.Google Scholar
Hill, W. D., Davies, G., Van De Lagemaat, L. N., Christoforou, A., Marioni, R. E., Fernandes, C. P., et al. (2014). Human cognitive ability is influenced by genetic variation in components of postsynaptic signalling complexes assembled by NMDA receptors and MAGUK proteins. Translational Psychiatry, 4, e341.Google Scholar
Hines, T. (1998). Further on Einstein’s brain. Experimental Neurology, 150, 343344.Google Scholar
Hopkins, W. D., Russe, J. L. & Schaeffer, J. (2014). Chimpanzee intelligence is heritable. Current Biology, 24, 16491652.CrossRefGoogle ScholarPubMed
Horvath, J. C., Forte, J. D. & Carter, O. (2015a). Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia, 66, 213236.Google Scholar
Horvath, J. C., Forte, J. D. (2015b). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimulation, 8, 535550.Google Scholar
Howard-Jones, P. A. (2014). Neuroscience and education: myths and messages. Nature Reviews Neuroscience, 15, 817824.Google Scholar
Hulshoff Pol, H. E., Schnack, H. G., Posthuma, D., Mandl, R. C. W., Baare, W. F., Van Oel, C., et al. (2006). Genetic contributions to human brain morphology and intelligence. Journal of Neuroscience, 26, 1023510242.Google Scholar
Hunt, E. B. (2011). Human Intelligence, Cambridge: Cambridge University Press.Google Scholar
Husain, M. & Mehta, M. A. (2011). Cognitive enhancement by drugs in health and disease. Trends in Cognitive Sciences, 15, 2836.Google Scholar
Huttenlocher, P. R. (1975). Synaptic and dendritic development and mental defect. In N. A. Buchwald & M. A. B. Brazier (Eds.), Brain Mechanisms in Mental Retardation: UCLA Forum in Medical Science, Number 18, 4th Edition, New York, NY: Academic Press.Google Scholar
Ilieva, I. P. & Farah, M. J. (2013). Enhancement stimulants: perceived motivational and cognitive advantages. Frontiers in Neuroscience, 7, 198.Google Scholar
Jacobs, B., Schall, M. & Scheibel, A. B. (1993). A quantitative dendritic analysis of Wernicke’s area in humans. II. Gender, hemispheric, and environmental factors. Journal of Comparative Neurology, 327, 97111.Google Scholar
Jaeggi, S. M., Buschkuehl, M., Jonides, J. & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105, 68296833.Google Scholar
Jaeggi, S. M., Buschkuehl, M., Jonides, J. Jaeggi, S. M., Buschkuehl, M., Jonides, J. & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences of the United States of America, 108, 1008110086.Google Scholar
Jaeggi, S. M., Buschkuehl, M., Shah, P. & Jonides, J. (2014). The role of individual differences in cognitive training and transfer. Memory and Cognition, 42, 464480.Google Scholar
Jaeggi, S. M., Studer-Luethi, B., Buschkuehl, M., Su, Y. F., Jonides, J. & Perrig, W. J. (2010). The relationship between n-back performance and matrix reasoning – implications for training and transfer. Intelligence, 38, 625635.Google Scholar
Jaenisch, R. & Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics, 33(Suppl), 245254.Google Scholar
Jauk, E., Neubauer, A. C., Dunst, B., Fink, A. & Benedek, M. (2015). Gray matter correlates of creative potential: a latent variable voxel-based morphometry study. Neuroimage, 111, 312320.Google Scholar
Jensen, A. (1980). Bias in Mental Testing, New York, NY: Free Press.Google Scholar
Jensen, A. R. (1969). How much can we boost IQ and scholastic achievement. Harvard Educational Review, 39, 1123.Google Scholar
Jensen, A. R. (1974). Kinship correlations reported by Sir Cyril Burt. Behavior Genetics, 4, 128.Google Scholar
Jensen, A. R. (1981). Straight Talk About Mental Tests, New York, NY: Free Press.Google Scholar
Jensen, A. R. (1998). The g Factor: The Science of Mental Ability, Westport, CT: Praeger.Google Scholar
Jensen, A. R. (2006). Clocking the Mind: Mental Chronometry and Individual Differences, New York, NY: Elsevier.Google Scholar
Jensen, A. R. & Miele, F. (2002). Intelligence, Race, and Genetics: Conversations with Arthur R. Jensen, Boulder, CO: Westview.Google Scholar
Johnson, M. R., Shkura, K., Langley, S. R., Delahaye-Duriez, A., Srivastava, P., Hill, W. D., et al. (2016). Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease. Nature Neuroscience, 19, 223232.Google Scholar
Johnson, W. & Bouchard, T. J. (2005). The structure of human intelligence: it is verbal, perceptual, and image rotation (VPR), not fluid and crystallized. Intelligence, 33, 393416.Google Scholar
Johnson, W., Bouchard, T. J., Krueger, R. F., McGue, M. & Gottesman, I. I. (2004). Just one g: consistent results from three test batteries. Intelligence, 32, 95107.Google Scholar
Johnson, W., Jung, R. E., Colom, R. & Haier, R. J. (2008a). Cognitive abilities independent of IQ correlate with regional brain structure. Intelligence, 36, 1828.Google Scholar
Johnson, W., Te Nijenhuis, J. & Bouchard, T. J. (2008b). Still just 1 g: consistent results from five test batteries. Intelligence, 36, 8195.Google Scholar
Jung, R. E. (2014). Evolution, creativity, intelligence, and madness: “Here Be Dragons”. Frontiers in Psychology, 5, 784.Google Scholar
Jung, R. E., Brooks, W. M., Yeo, R. A., Chiulli, S. J., Weers, D. C. & Sibbitt, W. L. (1999a). Biochemical markers of intelligence: a proton MR spectroscopy study of normal human brain. Proceedings of the Royal Society of London Series B – Biological Sciences, 266, 13751379.Google Scholar
Jung, R. E. & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: converging neuroimaging evidence. Behavioral and Brain Sciences, 30, 135154.Google Scholar
Jung, R. E. & Haier, R. J. (2013). Creativity and intelligence: brain networks that link and differentiate the expression of genius. In Vartanian, O., Bristol, A. S. & Kaufman, J. C., (Eds.), Neuroscience of Creativity, Cambridge, MA: The MIT Press.Google Scholar
Jung, R. E., Haier, R. J., Yeo, R. A., Rowland, L. M., Petropoulos, H., Levine, A. S., Sibbitt, W. L. & Brooks, W. M. (2005). Sex differences in N-acetylaspartate correlates of general intelligence: an 1H-MRS study of normal human brain. Neuroimage, 26, 965972.Google Scholar
Jung, R. E., Yeo, R. A., Chiulli, S. J., Sibbitt, W. L., Weers, D. C., Hart, B. L. & Brooks, W. M. (1999b). Biochemical markers of cognition: a proton MR spectroscopy study of normal human brain. NeuroReport, 10, 33273331.Google Scholar
Kanai, R. & Rees, G. (2011). The structural basis of inter-individual differences in human behaviour and cognition. Nature Reviews Neuroscience, 12, 231242.Google Scholar
Kane, M. J. & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychonomic Bulletin & Review, 9, 637671.Google Scholar
Kane, M. J., Hambrick, D. Z. & Conway, A. R. A. (2005). Working memory capacity and fluid intelligence are strongly related constructs: comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131, 6671.Google Scholar
Karama, S., Ad-Dab’bagh, Y., Haier, R. J., Deary, I. J., Lyttelton, O. C., Lepage, C. & Evans, A. C. (2009). Positive association between cognitive ability and cortical thickness in a representative US sample of healthy 6 to 18 year-olds. Intelligence, 37, 145155.Google Scholar
Karama, S., Colom, R., Johnson, W., Deary, I. J., Haier, R., Waber, D. P., Lepage, C., Ganjavi, H., Jung, R., Evans, A. C. & Grp, B. D. C. (2011). Cortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6 to 18. Neuroimage, 55, 14431453.Google Scholar
Kendler, K. S., Turkheimer, E., Ohlsson, H., Sundquist, J. & Sundquist, K. (2015). Family environment and the malleability of cognitive ability: a Swedish national home-reared and adopted-away cosibling control study. Proceedings of the National Academy of Sciences of the United States of America, 112, 46124617.Google Scholar
Keyes, D. (1966). Flowers for Algernon, New York, NY: Harcourt.Google Scholar
Kievit, R. A., Romeijn, J. W., Waldorp, L. J., Wicherts, J. M., Scholte, H. S. & Borsboom, D. (2011). Mind the gap: a psychometric approach to the reduction problem. Psychological Inquiry, 22, 6787.Google Scholar
Kievit, R. A., Van Rooijen, H., Wicherts, J. M., Waldorp, L. J., Kan, K. J., Scholte, H. S. & Borsboom, D. (2012). Intelligence and the brain: a model-based approach. Cognitive Neuroscience, 3, 8997.Google Scholar
Kim, D.-J., Davis, E. P., Sandman, C. A., Sporns, O., O’Donnell, B. F., Buss, C. & Hetrick, W. P. (2016). Children’s intellectual ability is associated with structural network integrity. Neuroimage, 124(Part A), 550556.Google Scholar
Koenis, M. M., Brouwer, R. M., Van Den Heuvel, M. P., Mandl, R. C., Van Soelen, I. L., Kahn, R. S., Boomsma, D. I. & Hulshoff Pol, H. E. (2015). Development of the brain’s structural network efficiency in early adolescence: a longitudinal DTI twin study. Human Brain Mapping, 36, 49384953.Google Scholar
Kohannim, O., Hibar, D. P., Stein, J. L., Jahanshad, N., Hua, X., Rajagopalan, P., Toga, A. W., Jack, C. R., Jr., Weiner, M. W., De Zubicaray, G. I., McMahon, K. L., Hansell, N. K., Martin, N. G., Wright, M. J., Thompson, P. M. & Alzheimer’s Disease Neuroimaging Initiative. (2012a). Discovery and replication of gene influences on brain structure using LASSO regression. Frontiers in Neuroscience, 6, 115.Google Scholar
Kohannim, O., Jahanshad, N., Braskie, M. N., Stein, J. L., Chiang, M.-C., Reese, A. H., et al. (2012b). Predicting white matter integrity from multiple common genetic variants. Neuropsychopharmacology, 37, 20122019.Google Scholar
Kolata, S., Light, K., Wass, C. D., Colas-Zelin, D., Roy, D. & Matzel, L. D. (2010). A dopaminergic gene cluster in the prefrontal cortex predicts performance indicative of general intelligence in genetically heterogeneous mice. PLoS ONE, 5, e14036.Google Scholar
Kovas, Y. & Plomin, R. (2006). Generalist genes: implications for the cognitive sciences. Trends in Cognitive Sciences, 10, 198203.Google Scholar
Krause, B. & Cohen Kadosh, R. (2014). Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation. Frontiers in Systems Neuroscience, 8, 25.Google Scholar
Kuhl, P. K. (2000). A new view of language acquisition. Proceedings of the National Academy of Sciences of the United States of America, 97, 1185011857.Google Scholar
Kuhl, P. K. (2004). Early language acquisition: cracking the speech code. Nature Reviews Neuroscience, 5, 831843.Google Scholar
Kyllonen, P. C. & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity. Intelligence, 14, 389433.Google Scholar
Langer, N., Pedroni, A., Gianotti, L. R., Hanggi, J., Knoch, D. & Jancke, L. (2012). Functional brain network efficiency predicts intelligence. Human Brain Mapping, 33, 13931406.Google Scholar
Lashley, K. S. (1964). Brain Mechanisms and Intelligence, New York, NY: Hafner.Google Scholar
Lee, J. J. (2010). Review of intelligence and how to get it: why schools and cultures count. Personality and Individual Differences, 48, 247255.Google Scholar
Lee, K. H., Choi, Y. Y., Gray, J. R., Cho, S. H., Chae, J. H., Lee, S. & Kim, K. (2006). Neural correlates of superior intelligence: stronger recruitment of posterior parietal cortex. Neuroimage, 29, 578586.Google Scholar
Lemos, G. C., Almeida, L. S. & Colom, R. (2011). Intelligence of adolescents is related to their parents’ educational level but not to family income. Personality and Individual Differences, 50, 10621067.Google Scholar
Lerner, B. (1980). The war on testing – Detroit Edison in perspective. Personnel Psychology, 33, 1116.Google Scholar
Li, Y., Liu, Y., Li, J., Qin, W., Li, K., Yu, C. & Jiang, T. (2009). Brain anatomical network and intelligence. PLoS Computational Biology, 5, e1000395.Google Scholar
Limb, C. J. & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: an FMRI study of jazz improvisation. PLoS ONE, 3, e1679.Google Scholar
Lipp, I., Benedek, M., Fink, A., Koschutnig, K., Reishofer, G., Bergner, S., Ischebeck, A., Ebner, F. & Neubauer, A. (2012). Investigating neural efficiency in the visuo-spatial domain: an FMRI study. PLoS ONE, 7, e51316.Google Scholar
Liu, S., Chow, H. M., Xu, Y., Erkkinen, M. G., Swett, K. E., Eagle, M. W., Rizik-Baer, D. A. & Braun, A. R. (2012). Neural correlates of lyrical improvisation: an FMRI study of freestyle rap. Science Reports, 2, 834.Google Scholar
Loehlin, J. C. (1989). Partitioning environmental and genetic contributions to behavioral development. American Psychologist, 44, 12851292.Google Scholar
Loehlin, J. C. & Nichols, R. C. (1976). Heredity, Environment, & Personality: A Study of 850 Sets of Twins, Austin, TX: University of Texas Press.Google Scholar
Luber, B. & Lisanby, S. H. (2014). Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). Neuroimage, 85(Pt 3), 961970.Google Scholar
Lubinski, D. (2009). Cognitive epidemiology: with emphasis on untangling cognitive ability and socioeconomic status. Intelligence, 37, 625633.Google Scholar
Lubinski, D., Benbow, C. P. & Kell, H. J. (2014). Life paths and accomplishments of mathematically precocious males and females four decades later. Psychological Science, 25, 22172232.Google Scholar
Lubinski, D., Benbow, C. P., Webb, R. M. & Bleske-Rechek, A. (2006). Tracking exceptional human capital over two decades. Psychological Science, 17, 194199.Google Scholar
Lubinski, D., Schmidt, D. B. & Benbow, C. P. (1996). A 20-year stability analysis of the study of values for intellectually gifted individuals from adolescence to adulthood. Journal of Applied Psychology, 81, 443451.Google Scholar
Luciano, M., Wright, M. J., Smith, G. A., Geffen, G. M., Geffen, L. B. & Martin, N. G. (2001). Genetic covariance among measures of information processing speed, working memory, and IQ. Behavior and Genetics, 31, 581592.Google Scholar
Luders, E., Harr, K. L., Thompson, P. M., Rex, D. E., Woods, R. P., Deluca, H., Jancke, L. & Toga, A. W. (2006). Gender effects on cortical thickness and the influence of scaling. Human Brain Mapping, 27, 314324.Google Scholar
Luders, E., Narr, K. L., Bilder, R. M., Thompson, P. M., Szeszko, P. R., Hamilton, L. & Toga, A. W. (2007). Positive correlations between corpus callosum thickness and intelligence. Neuroimage, 37, 14571464.Google Scholar
Luders, E., Narr, K. L., Thompson, P. M., Rex, D. E., Jancke, L., Steinmetz, H. & Toga, A. W. (2004). Gender differences in cortical complexity. Nature Neuroscience, 7, 799800.Google Scholar
Luo, Q., Perry, C., Peng, D. L., Jin, Z., Xu, D., Ding, G. S. & Xu, S. Y. (2003). The neural substrate of analogical reasoning: an fMRI study. Cognitive Brain Research, 17, 527534.Google Scholar
Mackey, A. P., Finn, A. S., Leonard, J. A., Jacoby-Senghor, D. S., West, M. R., Gabrieli, C. F. & Gabrieli, J. D. (2015). Neuroanatomical correlates of the income-achievement gap. Psychological Science, 26, 925933.Google Scholar
Mackey, A. P., Hill, S. S., Stone, S. I. & Bunge, S. A. (2011). Differential effects of reasoning and speed training in children. Developmental Science, 14, 582590.Google Scholar
Mackintosh, N. J. (1995). Cyril Burt: Fraud or Framed? Oxford: Oxford University Press.Google Scholar
Mackintosh, N. J. (2011) IQ and Human Intelligence, Oxford: Oxford University Press.Google Scholar
Maguire, E. A., Valentine, E. R., Wilding, J. M. & Kapur, N. (2003). Routes to remembering: the brains behind superior memory. Nature Neuroscience, 6, 9095.Google Scholar
Maher, B. (2008). Poll results: look who’s doping. Nature, 452, 674675.Google Scholar
Maldjian, J. A., Davenport, E. M. & Whitlow, C. T. (2014). Graph theoretical analysis of resting-state MEG data: identifying interhemispheric connectivity and the default mode. Neuroimage, 96, 8894.Google Scholar
Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annual Review of Genomics and Humam Genetics, 9, 387402.Google Scholar
Marioni, R. E., Davies, G., Hayward, C., Liewald, D., Kerr, S. M., Campbell, A., et al. (2014). Molecular genetic contributions to socioeconomic status and intelligence. Intelligence, 44, 2632.Google Scholar
Maslen, H., Faulmuller, N. & Savulescu, J. (2014). Pharmacological cognitive enhancement – how neuroscientific research could advance ethical debate. Frontiers in Systems Neuroscience, 8, 107.Google Scholar
Matzel, L. D., Han, Y. R., Grossman, H., Karnik, M. S., Patel, D., Scott, N., Specht, S. M. & Gandhi, C. C. (2003). Individual differences in the expression of a “general” learning ability in mice. Journal of Neuroscience, 23, 64236433.Google Scholar
Matzel, L. D. & Kolata, S. (2010). Selective attention, working memory, and animal intelligence. Neuroscience and Biobehavioral Reviews, 34, 2330.Google Scholar
Matzel, L. D., Sauce, B. & Wass, C. (2013). The architecture of intelligence: converging evidence from studies of humans and animals. Current Directions in Psychological Science, 22, 342348.Google Scholar
Mayseless, N. & Shamay-Tsoory, S. G. (2015). Enhancing verbal creativity: modulating creativity by altering the balance between right and left inferior frontal gyrus with tDCS. Neuroscience, 291, 167176.Google Scholar
McDaniel, M. A. (2005). Big-brained people are smarter: a meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence, 33, 337346.Google Scholar
McGue, M., Bouchard, T. J., Iacono, W. G. & Lykken, D. T. (1993). Age effects on heritability of intelligence. In Plomin, R. & McClearn, G. E. (Eds.), Nature, Nurture, and Psychology, Washington, DC: American Psychological Association.Google Scholar
McKinley, R. A., Bridges, N., Walters, C. M. & Nelson, J. (2012). Modulating the brain at work using noninvasive transcranial stimulation. Neuroimage, 59, 129137.Google Scholar
Melby-Lervag, M. & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49, 270291.Google Scholar
Miller, B. L., Boone, K., Cummings, J. L., Read, S. L. & Mishkin, F. (2000). Functional correlates of musical and visual ability in frontotemporal dementia. British Journal of Psychiatry, 176, 458463.Google Scholar
Miller, B. L., Cummings, J., Mishkin, F., Boone, K., Prince, F., Ponton, M. & Cotman, C. (1998). Emergence of artistic talent in frontotemporal dementia. Neurology, 51, 978982.Google Scholar
Moody, D. E. (2009). Can intelligence be increased by training on a task of working memory? Intelligence, 37, 327328.Google Scholar
Muetzel, R. L., Mous, S. E., Van Der Ende, J., Blanken, L. M., Van Der Lugt, A., Jaddoe, V. W., Verhulst, F. C., Tiemeier, H. & White, T. (2015). White matter integrity and cognitive performance in school-age children: a population-based neuroimaging study. Neuroimage, 119, 119128.Google Scholar
Murray, C. (1995). The bell curve and its critics. Commentary, 99, 2330.Google Scholar
Murray, C., Pattie, A., Starr, J. M. & Deary, I. J. (2012) Does cognitive ability predict mortality in the ninth decade? The Lothian Birth Cohort 1921. Intelligence, 40, 490498.Google Scholar
Muzur, A., Pace-Schott, E. F. & Hobson, J. A. (2002). The prefrontal cortex in sleep. Trends in Cognitive Science, 6, 475481.Google Scholar
Neisser, U., Boodoo, G., Bouchard, T. J., Boykin, A. W., Brody, N., Ceci, S. J., Halpern, D. F., Loehlin, J. C., Perloff, R., Sternberg, R. J. & Urbina, S. (1996). Intelligence: knowns and unknowns. American Psychologist, 51, 77101.Google Scholar
Neubauer, A. C. & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience and Biobehavioral Reviews, 33, 10041023.Google Scholar
Neville, H., Stevens, C., Pakulak, E. & Bell, T. A. (2013). Commentary: neurocognitive consequences of socioeconomic disparities. Developmental Science, 16, 708712.Google Scholar
Newman, S. D. & Just, M. A. (2005). The neural bases of intelligence: a perspective based on functional neuroimaging. In Cognition and Intelligence: Identifying the Mechanisms of the Mind. New York, NY: Cambridge University Press.Google Scholar
Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. (2015). Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nature Biotechnology, 33, 755760.Google Scholar
Nisbett, R. E. (2009). Intelligence and How To Get It: Why Schools and Cultures Count, New York, NY: W.W. Norton & Co.Google Scholar
Nisbett, R. E., Aronson, J., Blair, C., Dickens, W., Flynn, J., Halpern, D. F. & Turkheimer, E. (2012). Intelligence: new findings and theoretical developments. American Psychologist, 67, 130159.Google Scholar
Noble, K. G., Houston, S. M., Brito, N. H., Bartsch, H., Kan, E., Kuperman, J. M., et al. (2015). Family income, parental education and brain structure in children and adolescents. Nature Neuroscience, 18, 773778.Google Scholar
Pahor, A. & Jausovec, N. (2014). The effects of theta transcranial alternating current stimulation (tACS) on fluid intelligence. International Journal of Psychophysiology, 93, 322331.Google Scholar
Panizzon, M. S., Vuoksimaa, E., Spoon, K. M., Jacobson, K. C., Lyons, M. J., Franz, C. E., Xian, H., Vasilopoulos, T. & Kremen, W. S. (2014). Genetic and environmental influences of general cognitive ability: is g a valid latent construct? Intelligence, 43, 6576.Google Scholar
Parasuraman, R. & Jiang, Y. (2012). Individual differences in cognition, affect, and performance: behavioral, neuroimaging, and molecular genetic approaches. Neuroimage, 59, 7082.Google Scholar
Parks, R. W., Loewenstein, D. A., Dodrill, K. L., Barker, W. W., Yoshii, F., Chang, J. Y., Emran, A., Apicella, A., Sheramata, W. A. & Duara, R. (1988). Cerebral metabolic effects of a verbal fluency test – a PET scan study. Journal of Clinical and Experimental Neuropsychology, 10, 565575.Google Scholar
Pascoli, V., Turiault, M. & Luscher, C. (2012). Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature, 481, 7175.Google Scholar
Pedersen, N. L., Plomin, R., Nesselroade, J. R. & McClearn, G. E. (1992). A quantitative genetic analysis of cognitive abilities during the 2nd half of the life span. Psychological Science, 3, 346353.Google Scholar
Penke, L., Maniega, S. M., Bastin, M. E., Hernandez, M. C. V., Murray, C., Royle, N. A., Starr, J. M., Wardlaw, J. M. & Deary, I. J. (2012). Brain white matter tract integrity as a neural foundation for general intelligence. Molecular Psychiatry, 17, 10261030.Google Scholar
Perfetti, B., Saggino, A., Ferretti, A., Caulo, M., Romani, G. L. & Onofrj, M. (2009). Differential patterns of cortical activation as a function of fluid reasoning complexity. Human Brain Mapping, 30, 497510.Google Scholar
Perobelli, S., Alessandrini, F., Zoccatelli, G., Nicolis, E., Beltramello, A., Assael, B. M. & Cipolli, M. (2015). Diffuse alterations in grey and white matter associated with cognitive impairment in Shwachman–Diamond syndrome: evidence from a multimodal approach. Neuroimage Clinics, 7, 721731.Google Scholar
Pesenti, M., Zago, L., Crivello, F., Mellet, E., Samson, D., Duroux, B., Seron, X., Mazoyer, B. & Tzourio-Mazoyer, N. (2001). Mental calculation in a prodigy is sustained by right prefrontal and medial temporal areas. Nature Neuroscience, 4, 103107.Google Scholar
Petrill, S. A. & Deater-Deckard, K. (2004). The heritability of general cognitive ability: a within-family adoption design. Intelligence, 32, 403409.Google Scholar
Pfleiderer, B., Ohrmann, P., Suslow, T., Wolgast, M., Gerlach, A. L., Heindel, W. & Michael, N. (2004). N-acetylaspartate levels of left frontal cortex are associated with verbal intelligence in women but not in men: a proton magnetic resonance spectroscopy study. Neuroscience, 123, 10531058.Google Scholar
Pietschnig, J., Voracek, M. & Formann, A. K. (2010). Mozart effect–Shmozart effect: a meta-analysis. Intelligence, 38, 314323.Google Scholar
Pineda-Pardo, J. A., Bruna, R., Woolrich, M., Marcos, A., Nobre, A. C., Maestu, F. & Vidaurre, D. (2014). Guiding functional connectivity estimation by structural connectivity in MEG: an application to discrimination of conditions of mild cognitive impairment. Neuroimage, 101, 765777.Google Scholar
Pinho, A. L., De Manzano, O., Fransson, P., Eriksson, H. & Ullen, F. (2014). Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. Journal of Neuroscience, 34, 61566163.Google Scholar
Pinker, S. (2002). The Blank Slate: The Modern Denial of Human Nature, New York, NY: Viking.Google Scholar
Plis, S. M., Weisend, M. P., Damaraju, E., Eichele, T., Mayer, A., Clark, V. P., Lane, T. & Calhoun, V. D. (2011). Effective connectivity analysis of fMRI and MEG data collected under identical paradigms. Computers in Biology and Medicine, 41, 11561165.Google Scholar
Plomin, R. (1999). Genetics and general cognitive ability. Nature, 402, C25C29.Google Scholar
Plomin, R. & Deary, I. J. (2015). Genetics and intelligence differences: five special findings. Molecular Psychiatry, 20, 98108.Google Scholar
Plomin, R. & Kosslyn, S. M. (2001). Genes, brain and cognition. Nature Neuroscience, 4, 11531154.Google Scholar
Plomin, R. & Petrill, S. A. (1997). Genetics and intelligence: what’s new? Intelligence, 24, 5377.Google Scholar
Plomin, R., Shakeshaft, N. G., McMillan, A. & Trzaskowski, M. (2014a). Nature, nurture, and expertise. Intelligence, 45, 4659.Google Scholar
Plomin, R., Shakeshaft, N. G., McMillan, A. & Trzaskowski, M. (2014b). Nature, nurture, and expertise: response to Ericsson. Intelligence, 45, 115117.Google Scholar
Pol, H. E. H., Posthuma, D., Baare, W. F. C., De Geus, E. J. C., Schnack, H. G., Van Haren, N. E. M., Van Oel, C. J., Kahn, R. S. & Boomsma, D. I. (2002). Twin–singleton differences in brain structure using structural equation modelling. Brain, 125, 384390.Google Scholar
Polderman, T. J., Benyamin, B., De Leeuw, C. A., Sullivan, P. F., Van Bochoven, A., Visscher, P. M. & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47, 702709.Google Scholar
Poldrack, R. A. (2015). Is “efficiency” a useful concept in cognitive neuroscience? Developmental and Cognitive Neuroscience, 11, 1217.Google Scholar
Posthuma, D., Baare, W. F. C., Pol, H. E. H., Kahn, R. S., Boomsma, D. I. & De Geus, E. J. C. (2003a). Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed. Twin Research, 6, 131139.Google Scholar
Posthuma, D., De Geus, E. & Boomsma, D. (2003b). Genetic contributions to anatomical, behavioral, and neurophysiological indices of cognition. In Plomin, R., Defries, J., Craig, I. W. & McGuffin, P. (Eds.), Behavioral Genetics in the Postgenomic Era, Washington, DC: American Psychological Association.Google Scholar
Posthuma, D., De Geus, E. J., Baare, W. F., Hulshoff Pol, H. E., Kahn, R. S. & Boomsma, D. I. (2002). The association between brain volume and intelligence is of genetic origin. Nature Neuroscience, 5, 8384.CrossRefGoogle ScholarPubMed
Posthuma, D. & De Geus, E. J. C. (2006). Progress in the molecular-genetic study of intelligence. Current Directions in Psychological Science, 15, 151155.Google Scholar
Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. (1997). Neural substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven’s Progressive Matrices Test. Cognitive Psychology, 33, 4363.Google Scholar
Prat, C. S., Mason, R. A. & Just, M. A. (2012). An fMRI investigation of analogical mapping in metaphor comprehension: the influence of context and individual cognitive capacities on processing demands. Journal of Experimental Psychology, Learning, Memory and Cognition, 38, 282294.Google Scholar
Preusse, F., Van Der Meer, E., Deshpande, G., Krueger, F. & Wartenburger, I. (2011). Frontiers: fluid intelligence allows flexible recruitment of the parieto-frontal network in analogical reasoning. Frontiers in Human Neuroscience, 5, 22.Google Scholar
Protzko, J., Aronson, J. & Blair, C. (2013). How to make a young child smarter: evidence from the database of raising intelligence. Perspectives on Psychological Science, 8, 2540.Google Scholar
Ramey, C. T. & Ramey, S. L. (2004). Early learning and school readiness: can early intervention make a difference? Merrill-Palmer Quarterly Journal of Developmental Psychology, 50, 471491.Google Scholar
Rankin, K. P., Liu, A. A., Howard, S., Slama, H., Hou, C. E., Shuster, K. & Miller, B. L. (2007). A case-controlled study of altered visual art production in Alzheimer’s and FTLD. Cognitive and Behavioral Neurology, 20, 4861.Google Scholar
Rauscher, F. H., Shaw, G. L. & Ky, K. N. (1993). Music and spatial task performance. Nature, 365, 611.Google Scholar
Redick, T. S. (2015). Working memory training and interpreting interactions in intelligence interventions. Intelligence, 50, 1420.Google Scholar
Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., Kane, M. J. & Engle, R. W. (2013). No evidence of intelligence improvement after working memory training: a randomized, placebo-controlled study. Journal of Experimental Psychology – General, 142, 359379.Google Scholar
Ree, M. J. & Carretta, T. R. (1996). Central role of g in military pilot selection. International Journal of Aviation Psychology, 6, 111123.Google Scholar
Ree, M. J. & Earles, J. A. (1991). Predicting training success – not much more than g. Personnel Psychology, 44, 321332.Google Scholar
Reijneveld, J. C., Ponten, S. C., Berendse, H. W. & Stam, C. J. (2007). The application of graph theoretical analysis to complex networks in the brain. Clinical Neurophysiology, 118, 23172331.Google Scholar
Reverberi, C., Bonatti, L. L., Frackowiak, R. S., Paulesu, E., Cherubini, P. & Macaluso, E. (2012). Large scale brain activations predict reasoning profiles. Neuroimage, 59, 17521764.Google Scholar
Rhein, C., Muhle, C., Richter-Schmidinger, T., Alexopoulos, P., Doerfler, A. & Kornhuber, J. (2014). Neuroanatomical correlates of intelligence in healthy young adults: the role of basal ganglia volume. PLoS ONE, 9, e93623.Google Scholar
Ridley, M. (2003). Nature Via Nurture: Genes, Experience and What Makes Us Human, London: Fourth Estate.Google Scholar
Rietveld, C. A., Esko, T., Davies, G., Pers, T. H., Turley, P., Benyamin, B., et al. (2014). Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proceedings of the National Academy of Sciences of the United States of America, 111, 1379013794.Google Scholar
Ritchie, S. J., Booth, T., Valdés Hernández, M. D. C., Corley, J., Maniega, S. M., Gow, A. J., et al. (2015). Beyond a bigger brain: multivariable structural brain imaging and intelligence. Intelligence, 51, 4756.Google Scholar
Robertson, K. F., Smeets, S., Lubinski, D. & Benbow, C. P. (2010). Beyond the threshold hypothesis: even among the gifted and top math/science graduate students, cognitive abilities, vocational interests, and lifestyle preferences matter for career choice, performance, and persistence. Current Directions in Psychological Science, 19, 346351.Google Scholar
Sackett, P. R., Kuncel, N. R., Arneson, J. J., Cooper, S. R. & Waters, S. D. (2009). Does socioeconomic status explain the relationship between admissions tests and post-secondary academic performance? Psychological Bulletin, 135, 122.Google Scholar
Sahakian, B. & Morein-Zamir, S. (2007). Professor’s little helper. Nature, 450, 11571159.Google Scholar
Sander, J. D. & Joung, J. K. (2014). CRISPR-Cas systems for genome editing, regulation and targeting. Nature Biotechnology, 32, 347355.Google Scholar
Santarnecchi, E., Galli, G., Polizzotto, N. R., Rossi, A. & Rossi, S. (2014). Efficiency of weak brain connections support general cognitive functioning. Human Brain Mapping, 35, 45664582.Google Scholar
Santarnecchi, E., Polizzotto, N. R., Godone, M., Giovannelli, F., Feurra, M., Matzen, L., Rossi, A. & Rossi, S. (2013). Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials. Current Biology, 23, 14491453.Google Scholar
Santarnecchi, E., Rossi, S. & Rossi, A. (2015a). The smarter, the stronger: intelligence level correlates with brain resilience to systematic insults. Cortex, 64, 293309.Google Scholar
Santarnecchi, E., Tatti, E., Rossi, S., Serino, V. & Rossi, A. (2015b). Intelligence-related differences in the asymmetry of spontaneous cerebral activity. Human Brain Mapping, 36, 35863602.Google Scholar
Sauce, B. & Matzel, L. D. (2013). The causes of variation in learning and behavior: why individual differences matter. Frontiers in Psychology, 4, 395.Google Scholar
Sawyer, K. (2011). The cognitive neuroscience of creativity: a critical review. Creativity Research Journal, 23, 137154.Google Scholar
Schmidt, F. L. & Hunter, J. (2004). General mental ability in the world of work: occupational attainment and job performance. Journal of Personality and Social Psychology, 86, 162173.Google Scholar
Schmidt, F. L. & Hunter, J. E. (1998). The validity and utility of selection methods in personnel psychology: practical and theoretical implications of 85 years of research findings. Psychological Bulletin, 124, 262274.Google Scholar
Schmithorst, V. J. & Holland, S. K. (2006). Functional MRI evidence for disparate developmental processes underlying intelligence in boys and girls. Neuroimage, 31, 13661379.Google Scholar
Schmithorst, V. J., Wilke, M., Dardzinski, B. J. & Holland, S. K. (2005). Cognitive functions correlate with white matter architecture in a normal pediatric population: a diffusion tensor MRI study. Human Brain Mapping, 26, 139147.Google Scholar
Schwaighofer, M., Fischer, F. & Buhner, M. (2015). Does working memory training transfer? A meta-analysis including training conditions as moderators. Educational Psychologist, 50, 138166.Google Scholar
Sellers, K. K., Mellin, J. M., Lustenberger, C. M., Boyle, M. R., Lee, W. H., Peterchev, A. V. & Frohlich, F. (2015). Transcranial direct current stimulation (tDCS) of frontal cortex decreases performance on the WAIS-IV intelligence test. Behavior and Brain Research, 290, 3244.Google Scholar
Shakeshaft, N. G., Trzaskowski, M., McMillan, A., Krapohl, E., Simpson, M. A., Reichenberg, A., Cederlof, M., Larsson, H., Lichtenstein, P. & Plomin, R. (2015). Thinking positively: the genetics of high intelligence. Intelligence, 48, 123132.Google Scholar
Shamay-Tsoory, S. G., Adler, N., Aharon-Peretz, J., Perry, D. & Mayseless, N. (2011). The origins of originality: the neural bases of creative thinking and originality. Neuropsychologia, 49, 178185.Google Scholar
Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., Evans, A., Rapoport, J. & Giedd, J. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440, 676679.Google Scholar
Shehzad, Z., Kelly, C., Reiss, P. T., Cameron Craddock, R., Emerson, J. W., McMahon, K., Copland, D. A., Castellanos, F. X. & Milham, M. P. (2014). A multivariate distance-based analytic framework for connectome-wide association studies. Neuroimage, 93(Pt 1), 7494.Google Scholar
Shipstead, Z., Redick, T. S. & Engle, R. W. (2012). Is working memory training effective? Psychological Bulletin, 138, 628654.Google Scholar
Shonkoff, J. P., Phillips, D. & National Research Council (U.S.). Committee On Integrating The Science Of Early Childhood Development. (2000). From Neurons to Neighborhoods: The Science of Early Childhood Development, Washington, DC: National Academy Press.Google Scholar
Sigala, N. (2015). Effects of memory training or task design? A commentary on “Neural evidence for the use of digit-image mnemonic in a superior memorist: an fMRI study”. Frontiers in Human Neuroscience, 9, 183.Google Scholar
Sigman, M., Pena, M., Goldin, A. P. & Ribeiro, S. (2014). Neuroscience and education: prime time to build the bridge. Nature Neuroscience, 17, 497502.Google Scholar
Silverman, P. H. (2004). Rethinking genetic determinism. The Scientist, 18, 3233.Google Scholar
Simos, P. G., Rezaie, R., Papanicolaou, A. C. & Fletcher, J. M. (2014). Does IQ affect the functional brain network involved in pseudoword reading in students with reading disability? A magnetoencephalography study. Frontiers in Human Neuroscience, 7, 932.Google Scholar
Smith, M. E. & Farah, M. J. (2011). Are prescription stimulants “smart pills”? The epidemiology and cognitive neuroscience of prescription stimulant use by normal healthy individuals. Psychological Bulletin, 137, 717741.Google Scholar
Smith, S. M., Nichols, T. E., Vidaurre, D., Winkler, A. M., Behrens, T. E. J., Glasser, M. F., Ugurbil, K., Barch, D. M., Van Essen, D. C. & Miller, K. L. (2015). A positive–negative mode of population covariation links brain connectivity, demographics and behavior. Nature Neuroscience, 18, 15651567.Google Scholar
Snyderman, M. & Rothman, S. (1988). The IQ Controversy, The Media and Public Policy, New Brunswick, NJ: Transaction Books.Google Scholar
Song, M., Liu, Y., Zhou, Y., Wang, K., Yu, C. & Jiang, T. (2009). Default network and intelligence difference. Conference Proceedings of the IEEE Engineering in Medicine and Biology Society, 2009, 22122215.Google Scholar
Song, M., Zhou, Y., Li, J., Liu, Y., Tian, L., Yu, C. & Jiang, T. (2008). Brain spontaneous functional connectivity and intelligence. Neuroimage, 41, 11681176.Google Scholar
Spearman, C. (1904). General intelligence objectively determined and measured. American Journal of Psychology, 15, 201293.Google Scholar
Stam, C. J. & Reijneveld, J. C. (2007). Graph theoretical analysis of complex networks in the brain. Nonlinear Biomedical Physics, 1, 3.Google Scholar
Stanley, J., Keating, D. & Fox, L. H. (1974). Mathematical Talent: Discovery, Description, and Development, Baltimore, MD: The Johns Hopkins University Press.Google Scholar
Stein, J. L., Medland, S. E., Vasquez, A. A., Hibar, D. P., Senstad, R. E., Winkler, A. M., et al. (2012). Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics, 44, 552561.Google Scholar
Sternberg, R. J. (2000). Practical Intelligence in Everyday Life, Cambridge: Cambridge University Press.Google Scholar
Sternberg, R. J. (2003). Our research program validating the triarchic theory of successful intelligence: reply to Gottfredson. Intelligence, 31, 399413.Google Scholar
Sternberg, R. J. (2008). Increasing fluid intelligence is possible after all. Proceedings of the National Academy of Sciences of the United States of America, 105, 67916792.Google Scholar
Strenze, T. (2007) Intelligence and socioeconomic success: a meta-analytic review of longitudinal research. Intelligence, 35, 401426.Google Scholar
Suthana, N. & Fried, I. (2014). Deep brain stimulation for enhancement of learning and memory. Neuroimage, 85(Pt 3), 9961002.Google Scholar
Tammet, D. (2007). Born on a Blue Day: Inside the Extraordinary Mind of an Autistic Savant: A Memoir, New York, NY: Free Press.Google Scholar
Tang, C. Y., Eaves, E. L., Ng, J. C., Carpenter, D. M., Mai, X., Schroeder, D. H., Condon, C. A., Colom, R. & Haier, R. J. (2010). Brain networks for working memory and factors of intelligence assessed in males and females with fMRI and DTI. Intelligence, 38, 293303.Google Scholar
Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., Liu, G. S. & Tsien, J. Z. (1999). Genetic enhancement of learning and memory in mice. Nature, 401, 6369.Google Scholar
Te Nijenhuis, J., Jongeneel-Grimen, B. & Kirkegaard, E. O. W. (2014). Are Headstart gains on the g factor? A meta-analysis. Intelligence, 46, 209215.Google Scholar
Te Nijenhuis, J. & Van Der Flier, H. (2013). Is the Flynn effect on g? A meta-analysis. Intelligence, 41, 802807.Google Scholar
Terman, L. M. (1925). Genetic Studies of Genius, Stanford, CA: Stanford University Press.Google Scholar
Terman, L. M. (1954) Scientists and Nonscientists in a Group of 800 Gifted Men, Washington, DC: American Psychological Association.Google Scholar
Thoma, R. J., Yeo, R. A., Gangestad, S., Halgren, E., Davis, J., Paulson, K. M. & Lewine, J. D. (2006). Developmental instability and the neural dynamics of the speed–intelligence relationship. Neuroimage, 32, 14561464.Google Scholar
Thomas, P., Rammsayer, T., Schweizer, K. & Troche, S. (2015). Elucidating the functional relationship between working memory capacity and psychometric intelligence: a fixed-links modeling approach for experimental repeated-measures designs. Advances in Cognitive Psychology, 11, 313.Google Scholar
Thompson, P. M., Cannon, T. D., Narr, K. L., Van Erp, T., Poutanen, V. P., Huttunen, M., Lonnqvist, J., Standertskjold-Nordenstam, C. G., Kaprio, J., Khaledy, M., Dail, R., Zoumalan, C. I. & Toga, A. W. (2001). Genetic influences on brain structure. Nature Neuroscience, 4, 12531258.Google Scholar
Thompson, R., Crinella, F. M. & Yu, J. (1990). Brain Mechanisms in Problem Solving and Intelligence: A Survey of the Rat Brain, New York, NY: Plenum Press.Google Scholar
Thompson, T. W., Waskom, M. L., Garel, K. L., Cardenas-Iniguez, C., Reynolds, G. O., Winter, R., Chang, P., Pollard, K., Lala, N., Alvarez, G. A. & Gabrieli, J. D. (2013). Failure of working memory training to enhance cognition or intelligence. PLoS ONE, 8, e63614.Google Scholar
Thurstone, L. L. (1938). Primary Mental Abilities, Chicago, IL: University of Chicago Press.Google Scholar
Thurstone, L. L. & Thurstone, T. (1941). Factorial Studies of Intelligence, Chicago, IL: University of Chicago Press.Google Scholar
Tidwell, J. W., Dougherty, M. R., Chrabaszcz, J. R., Thomas, R. P. & Mendoza, J. L. (2014). What counts as evidence for working memory training? Problems with correlated gains and dichotomization. Psychonomic Bulletin and Review, 21, 620628.Google Scholar
Toga, A. W. & Thompson, P. M. (2005). Genetics of brain structure and intelligence. Annual Review of Neuroscience, 28, 123.Google Scholar
Tommasi, M., Pezzuti, L., Colom, R., Abad, F. J., Saggino, A. & Orsini, A. (2015). Increased educational level is related with higher IQ scores but lower g-variance: evidence from the standardization of the WAIS-R for Italy. Intelligence, 50, 6874.Google Scholar
Trahan, L. H., Stuebing, K. K., Fletcher, J. M. & Hiscock, M. (2014). The Flynn effect: a meta-analysis. Psychological Bulletin, 140, 13321360.Google Scholar
Trzaskowski, M., Davis, O. S. P., Defries, J. C., Yang, J., Visscher, P. M. & Plomin, R. (2013a). DNA evidence for strong genome-wide pleiotropy of cognitive and learning abilities. Behavior Genetics, 43, 267273.Google Scholar
Trzaskowski, M., Harlaar, N., Arden, R., Krapohl, E., Rimfeld, K., McMillan, A., Dale, P. S. & Plomin, R. (2014). Genetic influence on family socioeconomic status and children’s intelligence. Intelligence, 42, 8388.Google Scholar
Trzaskowski, M., Shakeshaft, N. G. & Plomin, R. (2013b). Intelligence indexes generalist genes for cognitive abilities. Intelligence, 41, 560565.Google Scholar
Turkheimer, E. (2000). Three laws of behavior genetics and what they mean. Current Directions in Psychological Science, 9, 160164.Google Scholar
Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B. & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Sciences, 14, 623628.Google Scholar
Ukkola-Vuoti, L., Kanduri, C., Oikkonen, J., Buck, G., Blancher, C., Raijas, P., Karma, K., Lahdesmaki, H. & Jarvela, I. (2013). Genome-wide copy number variation analysis in extended families and unrelated individuals characterized for musical aptitude and creativity in music. PLoS ONE, 8, e56356.Google Scholar
Unsworth, N., Redick, T. S., McMillan, B. D., Hambrick, D. Z., Kane, M. J. & Engle, R. W. (2015). Is playing video games related to cognitive abilities? Psychological Sciences, 26, 759774.Google Scholar
Urban, D. J. & Roth, B. L. (2015). DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annual Review of Pharmacology and Toxicology, 55, 399417.Google Scholar
Utz, K. S., Dimova, V., Oppenlander, K. & Kerkhoff, G. (2010). Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology – a review of current data and future implications. Neuropsychologia, 48, 27892810.Google Scholar
Vakhtin, A. A., Ryman, S. G., Flores, R. A. & Jung, R. E. (2014). Functional brain networks contributing to the Parieto-Frontal Integration Theory of Intelligence. Neuroimage, 103, 349354.Google Scholar
Van Den Heuvel, M. P., Kahn, R. S., Goni, J. & Sporns, O. (2012). High-cost, high-capacity backbone for global brain communication. Proceedings of the National Academy of Sciences of the United States of America, 109, 1137211377.Google Scholar
Van Den Heuvel, M. P. & Sporns, O. (2011). Rich-club organization of the human connectome. Journal of Neuroscience, 31, 1577515786.Google Scholar
Van Den Heuvel, M. P., Stam, C. J., Kahn, R. S. & Pol, H. E. (2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29, 76197624.Google Scholar
Van Der Sluis, S., Willemsen, G., De Geus, E. J. C., Boomsma, D. I. & Posthuma, D. (2008). Gene–environment interaction in adults’ IQ scores: measures of past and present environment. Behavior Genetics, 38, 348360.Google Scholar
Van Leeuwen, M., Van Den Berg, S. M. & Boomsma, D. I. (2008). A twin-family study of general IQ. Learning and Individual Differences, 18, 7688.Google Scholar
Vardy, E., Robinson, J. E., Li, C., Olsen, R. H., Diberto, J. F., Giguere, P. M., et al. (2015). A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron, 86, 936946.Google Scholar
Vendetti, M. S. & Bunge, S. A. (2014). Evolutionary and developmental changes in the lateral frontoparietal network: a little goes a long way for higher-level cognition. Neuron, 84, 906917.Google Scholar
Vernon, P. A. (1983). Speed of information processing and general intelligence. Intelligence, 7, 5370.Google Scholar
Villarreal, M. F., Cerquetti, D., Caruso, S., Schwarcz Lopez Aranguren, V., Gerschcovich, E. R., Frega, A. L. & Leiguarda, R. C. (2013). Neural correlates of musical creativity: differences between high and low creative subjects. PLoS ONE, 8, e75427.Google Scholar
Von Bastian, C. C. & Oberauer, K. (2013). Distinct transfer effects of training different facets of working memory capacity. Journal of Memory and Language, 69, 3658.Google Scholar
Von Bastian, C. C. & Oberauer, K. (2014). Effects and mechanisms of working memory training: a review. Psychological Research – Psychologische Forschung, 78, 803820.Google Scholar
Von Stumm, S. & Deary, I. J. (2013). Intellect and cognitive performance in the Lothian Birth Cohort 1936. Psychology and Aging, 28, 680684.Google Scholar
Vuoksimaa, E., Panizzon, M. S., Chen, C. H., Fiecas, M., Eyler, L. T., Fennema-Notestine, C., et al. (2015). The genetic association between neocortical volume and general cognitive ability is driven by global surface area rather than thickness. Cerebral Cortex, 25, 21272137.Google Scholar
Wagner, T., Robaa, D., Sippl, W. & Jung, M. (2014). Mind the methyl: methyllysine binding proteins in epigenetic regulation. ChemMedChem, 9, 466483.Google Scholar
Wai, J., Lubinski, D. & Benbow, C. P. (2005). Creativity and occupational accomplishments among intellectually precocious youths: an age 13 to age 33 longitudinal study. Journal of Educational Psychology, 97, 484492.Google Scholar
Walfisch, A., Sermer, C., Cressman, A. & Koren, G. (2013). Breast milk and cognitive development – the role of confounders: a systematic review. BMJ Open, 3, e003259.Google Scholar
Wang, L., Wee, C. Y., Suk, H. I., Tang, X. & Shen, D. (2015). MRI-based intelligence quotient (IQ) estimation with sparse learning. PLoS ONE, 10, e0117295.Google Scholar
Waterhouse, L. (2006). Inadequate evidence for multiple intelligences, Mozart effect, and emotional intelligence theories. Educational Psychologist, 41, 247255.Google Scholar
Watson, J. B. (1930). Behaviorism, New York, NY: W.W. Norton & Company.Google Scholar
Weiss, D., Haier, R. & Keating, D. (1974). Personality characteristics of mathematically precocious boys. In Stanley, J. & Keating, D. (Eds.), Mathematical Talent: Discovery, Description, and Development. Baltimore, MD: The Johns Hopkins University Press.Google Scholar
Wendelken, C., Ferrer, E., Whitaker, K. J. & Bunge, S. A. (2016). Fronto-parietal network reconfiguration supports the development of reasoning ability. Cerebral Cortex, 26, 21782190.Google Scholar
Whalley, L. J. & Deary, I. J. (2001). Longitudinal cohort study of childhood IQ and survival up to age 76. British Medical Journal, 322, 819.Google Scholar
Wharton, C. M., Grafman, J., Flitman, S. S., Hansen, E. K., Brauner, J., Marks, A. & Honda, M. (2000). Toward neuroanatomical models of analogy: a positron emission tomography study of analogical mapping. Cognitive Psychology, 40, 173197.Google Scholar
Wilke, M., Sohn, J. H., Byars, A. W. & Holland, S. K. (2003). Bright spots: correlations of gray matter volume with IQ in a normal pediatric population. Neuroimage, 20, 202215.Google Scholar
Willerman, L., Schultz, R., Rutledge, J. N. & Bigler, E. D. (1991). In vivo brain size and intelligence. Intelligence, 15, 223228.Google Scholar
Wilson, E. O. (1975). Sociobiology; The New Synthesis, Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
Witelson, S. F., Beresh, H. & Kigar, D. L. (2006). Intelligence and brain size in 100 postmortem brains: sex, lateralization and age factors. Brain, 129, 386398.Google Scholar
Witelson, S. F., Kigar, D. L. & Harvey, T. (1999). Albert Einstein’s brain – Reply. Lancet, 354, 1822.Google Scholar
Witelson, S. F., Kigar, D. L. & Harvey, T. (1999). The exceptional brain of Albert Einstein. Lancet, 353, 21492153.Google Scholar
Wolff, S. B., Grundemann, J., Tovote, P., Krabbe, S., Jacobson, G. A., Muller, C., Herry, C., Ehrlich, I., Friedrich, R. W., Letzkus, J. J. & Luthi, A. (2014). Amygdala interneuron subtypes control fear learning through disinhibition. Nature, 509, 453458.Google Scholar
Wu, X., Yang, W., Tong, D., Sun, J., Chen, Q., Wei, D., Zhang, Q., Zhang, M. & Qiu, J. (2015). A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Human Brain Mapping, 36, 27032718.Google Scholar
Yang, J. J., Yoon, U., Yun, H. J., Im, K., Choi, Y. Y., Lee, K. H., Park, H., Hough, M. G. & Lee, J. M. (2013). Prediction for human intelligence using morphometric characteristics of cortical surface: partial least square analysis. Neuroscience, 246, 351361.Google Scholar
Yin, L. J., Lou, Y. T., Fan, M. X., Wang, Z. X. & Hu, Y. (2015). Neural evidence for the use of digit-image mnemonic in a superior memorist: an fMRI study. Frontiers in Human Neuroscience, 9, 109.Google Scholar
Yu, C. C., Furukawa, M., Kobayashi, K., Shikishima, C., Cha, P. C., Sese, J., Sugawara, H., Iwamoto, K., Kato, T., Ando, J. & Toda, T. (2012). Genome-wide DNA methylation and gene expression analyses of monozygotic twins discordant for intelligence levels. Plos One, 7, e47081.Google Scholar
Zhao, M., Kong, L. & Qu, H. (2014). A systems biology approach to identify intelligence quotient score-related genomic regions, and pathways relevant to potential therapeutic treatments. Science Reports, 4, 4176.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Richard J. Haier, University of California, Irvine
  • Book: The Neuroscience of Intelligence
  • Online publication: 13 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316105771.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Richard J. Haier, University of California, Irvine
  • Book: The Neuroscience of Intelligence
  • Online publication: 13 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316105771.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Richard J. Haier, University of California, Irvine
  • Book: The Neuroscience of Intelligence
  • Online publication: 13 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316105771.009
Available formats
×