Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-26T17:51:06.014Z Has data issue: false hasContentIssue false

5 - New light on an old problem: defects and nonstoichiometry

Published online by Cambridge University Press:  06 January 2010

C. N. R. Rao
Affiliation:
Indian Institute of Science, Bangalore
J. Gopalakrishnan
Affiliation:
Indian Institute of Science, Bangalore
Get access

Summary

Introduction

That compounds have definite compositions is taken as a matter of faith and yet there are several inorganic solids which exhibit a wide range of compositions or show no simple correspondence between the composition and the detailed structure (or chemical identity). It has been known since the 1920s that stoichiometric FeO1.00 does not fall in the stability range of iron (II) oxide (FeO1.05–FeO1.15). Point defects in crystals such as vacancies and interstitials first described by Schottky, Frenkel and Wagner account for the transport properties of ionic solids, but there are serious difficulties in applying the point-defect formalism to solids possessing a wide stoichiometric range or to those solids exhibiting ordering of defects or extended defects (such as crystallographic shear planes). Although there is no clear-cut transition between the point-defect regime and the regime of highly ordered structural imperfections in nonstoichiometric solids, we can certainly say that the point-defect model is really valid only when the defect concentration (or the deviation from stoichiometry) is extremely small. Only in such dilute point-defect systems can one satisfactorily relate the electronic properties and the nonstoichiometry to the concentration of point defects.

A few general comments related to disorder and nonstoichiometry in crystals would be in order. Solids rarely attain a state of perfect order even when they are cooled close to absolute zero of temperature. At ordinary temperatures, crystalline solids generally depart from perfect order and contain several types of imperfections, which are, indeed, responsible for many important solid state phenomena such as diffusion, electrical conduction, plasticity and so on.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×