Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-29T16:29:25.654Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  11 September 2009

Klaus Rohde
Affiliation:
University of New England, Australia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, P. A. (1983). The theory of limiting similarity. Annual Review of Ecology and Systematics 14, 359–376.CrossRefGoogle Scholar
Aho, J. M. (1990). Helminth communities of amphibians and reptiles: comparative approaches to understanding patterns and processes. In Esch, G. W., Bush, A. O. and Aho, J. M., eds., Parasite Communities: Patterns and Processes. London, Chapman and Hall, pp. 157–195.Google Scholar
Allen, A. P., Brown, J. H. and Gillooly, J. F. (2002). Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297, 1545–1548.CrossRefGoogle ScholarPubMed
Anderson, A. N. (1995). Palaeontology. Adaptation and community ecology: a response to Walter and Patterson (1994). Australian Journal of Ecology 19, 241–250.Google Scholar
Andrewartha, H. G. (1970). Introduction to the Study of Animal Populations, 2nd edn., London, Chapman and Hall.CrossRefGoogle Scholar
Andrewartha, H. G. and Birch, L. C. (1954). The Distribution and Abundance of Animals. Chicago, University of Chicago Press.Google Scholar
Andrewartha, H. G. and Birch, L. C.(1984). The Ecological Web. Chicago and London, University of Chicago Press.Google Scholar
Aoyama, J. and Tsukamoto, K. (1997). Evolution of freshwater eels. Naturwissenschaften 84, 17–21.CrossRefGoogle ScholarPubMed
Aoyama, J., Nishida, M. and Tsukamoto, K. (2001). Molecular phylogeny and evolution in the freshwater eel, genus Anguilla. Molecular Phylogenetics and Evolution 20, 450–459.CrossRefGoogle ScholarPubMed
Apaloo, J. (2003). Single species evolutionary dynamics. Evolutionary Ecology 17, 33–49.CrossRefGoogle Scholar
Arme, C. and Halton, D. W. (1974). Observations on the occurrence of Diclidophora merlangi (Trematoda: Monogenea) on the gills of whiting, Gadus merlangus. Journal of Fish Biology 4, 27–32.CrossRefGoogle Scholar
Armonies, W. and Reise, K. (2000). Faunal diversity across a sandy shore. Marine Ecology Progress Series 196, 49–57.CrossRefGoogle Scholar
Armstrong, R. A. and McGee, R. (1980). Competitive exclusion. American Naturalist 115, 151–170.CrossRefGoogle Scholar
Armsworth, P. R. (2002). Recruitment limitation, population regulation and larval connectivity in reef fish metapopulations. Ecology cit. Doherty (2002).CrossRef
Arndt, W. (1940). Der prozentuelle Anteil der Parasiten auf und in Tieren im Rahmen des aus Deutschland bisher bekannten Tierartenbestandes. Zeitschrift für Parasitenkunde 121, 684–689.CrossRefGoogle Scholar
Arthur, W. (1982). The Evolutionary Consequences of Interspecific Competition. Advances in Ecological Research, London, New York, Academic Press, pp. 127–187.CrossRefGoogle Scholar
Bannarescu, P. (1975). Principles and problems of zoogeography. Belgrade, NOLIT.Google Scholar
Barker, J. S. F. (1983). Interspecific competition. In Ashburner, M., Carson, H. L. and Thompson, J. N. Jr., eds., The Genetics and Biology of Drosophila. London, Academic Press, pp. 285–341.Google Scholar
Barker, R. D. (1987). The diet of herbivores in the sheep rangelands. In Caughley, G., Shepherd, N. and Short, J. eds., Kangaroos: Their Ecology and Management in the Sheep Rangelands of Australia. Cambridge, Cambridge University Press, pp. 69–83.CrossRefGoogle Scholar
Barraclough, T. G., Harvey, P. H. and Nee, S. (1996). Rate of rbcL gene sequence evolution and species diversification in flowering plants (angiosperms). Proceedings of the Royal Society London B 263, 589–591.CrossRefGoogle Scholar
Bates, R. M. and Kennedy, C. R. (1990). Interactions between the acanthocephalans Pomporhynchus laevis and Acanthocephalus anguillae in rainbow trout: testing an exclusion hypothesis. Parasitology 100, 435–444.CrossRefGoogle ScholarPubMed
Bazin, C., Capy, P., Higuet, D. and Langin, T. (1997). Séquences d'AND mobiles et évolution du génome. Pour Sci., Hors. Sér. Janvier 97, 106–109. (cit. Harmelin-Vivien 2002).Google Scholar
Begon, M. and Mortimer, M. (1981). Population Ecology. A Unified Study of Animals and Plants. Oxford, London, Edinburgh, Boston, Melbourne, Blackwell Scientific.Google Scholar
Begon, M. J., Harper, J. L. and Townsend, C. R. (1990). Ecology. Individuals, Populations and Communities, 2nd edn. Boston, Blackwell Scientific.Google Scholar
Begon, M. J., Harper, J. L. and Townsend, C. R.(1996). Ecology. Oxford, Blackwell Scientific.Google Scholar
Ben-Eliahu, M. N. and Safriel, U. N. (1982). A comparison between species diversity of polychaetes from tropical and temperate structurally similar rocky intertidal habitats. Journal of Biogeography 9, 371–390.CrossRefGoogle Scholar
Benton, M. J. (1995). Diversification and extinction in the history of life. Science 268, 52–58.CrossRefGoogle ScholarPubMed
Benton, M. J.(1998). Analyzing diversification through time: reply to Sepkoski and Miller. Trends in Ecology and Evolution 13, 201.CrossRefGoogle Scholar
Benton, M. J. and Pearson, P. N. (2001). Speciation in the fossil record. Trends in Ecology and Evolution 16, 405–411.CrossRefGoogle ScholarPubMed
Berryman, A. A., (1987). Equilibrium or nonequilibrium: is that the question?Bulletin of the Ecological Society of America. 68, 500–502.Google Scholar
Beveridge, J., Chilton, N. B. and Spratt, D. M. (2002). The occurrence of species flocks in the nematode genus Cloacina (Strongyloidea: Cloacininae), parasitic in the stomachs of kangaroos and wallabies. Australian Journal of Zoology 50, 597–620.CrossRefGoogle Scholar
Bradley, D. J. (1974). Stability in host-parasite systems. In Usher, M. B. and Williamson, M. H., eds., Ecological Stability. London, Chapman and Hall, pp. 71–87.CrossRefGoogle Scholar
Bromham, L. and Cardillo, M. (2003). Testing the link between the latitudinal gradient in species richness and rates of molecular evolution. Journal of Evolutionary Biology 16, 200–207.CrossRefGoogle ScholarPubMed
Bromham, L. D., Rambaut, A. and Harvey, P. H. (1996). Determinants of rate variation in mammalian DNA sequence evolution. Journal of Molecular Evolution 43, 610–621.CrossRefGoogle ScholarPubMed
Brown, J. H. (1975). Geographical ecology of desert rodents. In Cody, M. L. and Diamond, J. M., eds., Ecology and Evolution of Communities. Cambridge, Mass. and London, Belknap Press of Harvard University, pp. 315–341.Google Scholar
Brown, J. H.(1995). Macroecology. Chicago, University of Chicago Press.Google Scholar
Brown, J. H.(1999). Macroecology: progress and prospect. Oikos 87, 3–14.CrossRefGoogle Scholar
Brown, J. H. and Maurer, B. A. (1989). Macroecology: the division of food and space among species on continents. Science 243, 1145–1150.CrossRefGoogle ScholarPubMed
Brown, J. H., Reichman, O. J. and Davidson, D. W. (1979). Granivory in desert ecosystems. Annual Review of Ecology and Systematics 10, 201–227.CrossRefGoogle Scholar
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. and West, G. B. (2004). Toward a metabolic theory of ecology. Ecology 85, 1771–1789.CrossRefGoogle Scholar
Burr, B. M. and Page, L. M. (1986). Zoogeography of the lower Ohio-upper Mississippi basin. In Hocutt, C. H. and Wiley, E. O., eds., The Zoogeography of North American Freshwater Fishes. London, Wiley, pp. 287–324.Google Scholar
Bush, A. O. (1990). Helminth communities in avian hosts: determinants of patterns. In Esch, G. W., Bush, A. O. and Aho, J. M., eds., Parasite Communities: Patterns and Processes. London, Chapman and Hall, pp. 197–232.Google Scholar
Butterworth, E. W. and Holmes, J. C. (1984). Character divergence in two species of trematodes (Pharyngostomoides: Strigeoidea). Journal of Parasitology 70, 315–316.CrossRefGoogle Scholar
Byrnes, T. and Rohde, K. (1992). Geographical distribution and host specificity of ectoparasites of Australian bream, Acanthopagrus spp. (Sparidae). Folia Parasitologica 39, 249–264.Google Scholar
Cairns, S. C. and Grigg, G. C. (1993). Population dynamics of red kangaroos (Macropus rufus) in relation to rainfall in the South Australian pastoral zone. Journal of Applied Ecology 30, 444–458.CrossRefGoogle Scholar
Cannon, L. R. G. (1979). Ecological observations on Cerithium moniliferum Kiener (Gastropoda: Cerithiidae) and its trematode parasites at Heron Island, Great Barrier Reef. Australian Journal of Marine and Freshwater Research 30, 365–374.CrossRefGoogle Scholar
Cappucino, N. (1995). Novel approaches to the study of population dynamics. In Cappucino, N. and Price, P. W., eds., Population Dynamics. New Approaches and Synthesis. San Diego, Academic Press, pp. 3–16.Google Scholar
Cardillo, M. (1999). Latitude and rates of diversification in birds and butterflies. Proceedings of the Royal Society London 266, 1221–1225.CrossRefGoogle Scholar
Caswell, H. (1978). Predator-mediated coexistence: a non-equilibrium model. American Naturalist 112, 127–154.CrossRefGoogle Scholar
Caswell, H. and Cohen, J. E. (1993). Local and regional regulation of species-area relations: a patch-occupancy model. In Ricklefs, R. E. and Schluter, D., eds., Species Diversity in Ecological Communities. Historical and Geographical Perspectives. Chicago, University of Chicago Press, pp. 99–107.Google Scholar
Caughley, G. (1987a). Introduction to the sheep rangelands. In Caughley, G., Shepherd, N. and Short, J., eds., Kangaroos: Their Ecology and Management in the Sheep Rangelands of Australia. Cambridge, Cambridge University Press, pp. 1–13.CrossRefGoogle Scholar
Caughley, G.(1987b). Ecological relationships. In Caughley, G., Shepherd, N. and Short, J., eds., Kangaroos: Their Ecology and Management in the Sheep Rangelands of Australia. Cambridge, Cambridge University Press, pp. 159–187.CrossRefGoogle Scholar
Caughley, G., Shepherd, N. and Short, J., eds. (1987). Kangaroos: Their Ecology and Management in the Sheep Rangelands of Australia. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Chesson, P. L. (1978). Predator-prey theory and variability. Annual Review of Ecology and Systematics 9, 288–325.CrossRefGoogle Scholar
Chesson, P. L.(1981). Models for spatially distributed populations: the effect of within-patch variability. Theoretical Population Biology 19, 288–323.CrossRefGoogle Scholar
Chesson, P. L.(1982). The stabilizing effect of a random environment. Journal of Mathematical Ecology 15, 1–36.Google Scholar
Chesson, P. L.(1986). Environmental variation and the coexistence of species. In Diamond, J. and Case, T., eds., Community Ecology. New York, Harper and Row, pp. 240–256.Google Scholar
Chesson, P. L. and Case, T. J. (1986). Overview: nonequilibrium community theories: chance, variability, history, and coexistence. In Diamond, J. and Case, T., eds., Community Ecology. New York, Harper and Row, pp. 229–239.Google Scholar
Chittaro, P. M. and Sale, P. F. (2003). Structure of patch-reef fish assemblages at St. Croix, US Virgin Islands, and One Tree Reef, Australia. Marine Ecology Progress Series 249, 277–287.CrossRefGoogle Scholar
Chowdhury, D. and Stauffer, D. (2004). Computer simulations of history of life: speciation, emergence of complex species from simple organisms, and extinctions. Physica A- Statistical Mechanics and its Applications 340, 685–696.CrossRefGoogle Scholar
Christiansen, F. B. and Fenchel, T. M. (1977). Theories of Populations in Biological Communities. Berlin, Heidelberg, New York, Springer-Verlag.CrossRefGoogle Scholar
Clutton-Brock, T. H. and Pemberton, J., eds., (2004). Soay Sheep. Dynamics and Selection in an Island Population. Cambridge, Cambridge University Press.Google Scholar
Clutton-Brock, T. H., Price, O. F., Albon, S. D. and Jewell, F. A. (1991). Persistent instability and population regulation in Soay sheep. Journal of Animal Ecology 60, 593–608.CrossRefGoogle Scholar
Cody, M. L. (1974). Competition and the Structure of Bird Communities. Princeton, N.J., Princeton University Press.Google ScholarPubMed
Cody, M. L. and Diamond, J. M., eds., (1975). Ecology and Evolution of Communities. Cambridge, Mass. and London, Belknap Press of Harvard University.Google Scholar
Colwell, R. K. (1984). What's new? Community ecology discovers biology. In Price, P. W., Slobodchikoff, C. N. and Gaud, W. S., eds., (1984). A New Ecology. Novel Approaches to Interactive Systems. New York, John Wiley & Sons, pp. 387–396.Google Scholar
Coman, B. J. (1996). A short history of the rabbit in Australia. Quadrant 4, 21–26.Google Scholar
Combes, C. (2001). Parasitism. The Ecology and Evolution of Intimate Interactions. Chicago and London, University of Chicago Press.Google Scholar
Compton, S. G., Lawton, J. H. and Rashbrook, V. K. (1989). Regional diversity, local community structure and vacant niches: the herbivorous arthropods of bracken in South Africa. Ecological Entomology 14, 365–373.CrossRefGoogle Scholar
Connell, J. H. (1975). Some mechanisms producing structure in natural communities: a model and evidence from field experiments. In Cody, M. L. and Diamond, J. M., eds., Ecology and Evolution of Communities. Cambridge, Mass., Harvard University Press, pp. 460–490.Google Scholar
Connell, J. H.(1978). Diversity in tropical rain forests and coral reefs. Science 199, 1302–1309.CrossRefGoogle ScholarPubMed
Connell, J. H.(1979). Tropical rain forests and coral reefs as open non-equilibrium systems. Symposia of the British Ecological Society 20, 141–163.Google Scholar
Connell, J. H.(1980). Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35, 131–138.CrossRefGoogle Scholar
Connell, J. H.(1983). On the prevalence and relative importance of interspecific competition: evidence from field experiments. American Naturalist 122, 661–696.CrossRefGoogle Scholar
Connell, J. H. and Green, P. T. (2000). Seedling dynamics over thirty-two years in a tropical rain forest tree. Ecology 81, 568–584.CrossRefGoogle Scholar
Connell, J. H., Tracey, J. G. and Webb, L. J. (1984). Compensatory recruitment, growth, and mortality as factors maintaining rain forest tree diversity. Ecological Monographs 54, 141–184.CrossRefGoogle Scholar
Connor, E. F. and Simberloff, D. S. (1978). Species number and compositional similarity of the Galapagos flora and avifauna. Ecological Monographs 48, 219–248.CrossRefGoogle Scholar
Connor, E. F. and Simberloff, D. S.(1986). Competition, scientific method, and null models in ecology. American Scientist 74, 155–162.Google Scholar
Cooper, G. (1993). The competition controversy in community ecology. Biology and Philosophy 8, 359–384.CrossRefGoogle Scholar
Cooper, G.(2001). Must there be a balance in nature?Biology and Philosophy 16, 481–506.CrossRefGoogle Scholar
Cornell, H. V. (1985a). Local and regional richness of cynipine gall wasps on California oaks. Ecology 66, 1247–1260.CrossRefGoogle Scholar
Cornell, H. V.(1985b). Species assemblages of cynipid gall wasps are not saturated. American Naturalist 126, 565–569.CrossRefGoogle Scholar
Cornell, H. V.(1999). Unsaturation and regional influences on species richness in ecological communities: a review of the evidence. Ecoscience 6, 303–315.CrossRefGoogle Scholar
Cornell, H. V.(2001). Diversity, community/regional level. In Levin, S., ed., Encyclopedia of Biodiversity, vol. 32. New York, Academic Press, pp. 161–177.Google Scholar
Cornell, H. V. and Karlson, R. H. (1997). Local and regional processes as controls of species richness. In Tilman, D. and Kareiva, P., eds., Spatial Ecology. The Role of Space in Population Dynamics and Interspecific Interactions. Princeton, N.J., Princeton University Press, pp. 250–268.Google Scholar
Cornell, H. V. and Lawton, J. H. (1992). Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. Journal of Animal Ecology 61, 1–12.CrossRefGoogle Scholar
Courtillot, V. and Gaudemer, Y. (1996). Effects of mass extinctions on biodiversity. Nature 381, 146–148.CrossRefGoogle Scholar
Crame, J. A. (2001). Taxonomic diversity gradients through geological time. Diversity and Distributions 7, 175–189.CrossRefGoogle Scholar
Crawley, M. J., ed., (1986). Plant Ecology. Oxford, Blackwell Scientific Publishing.Google Scholar
Crawley, M. J. (1990). The population dynamics of plants. In Hassell, M. P. and May, R. M., eds., Population, Regulation and Dynamics. Philosophical Transactions of the Royal Society of London, Series B330, 125–140.
Criddle, R. S., Church, J. N., Smith, B. N. and Hansen, L. D. (2003). Fundamental causes of the global patterns of species range and richness. Russian Journal of Plant Physiology 50, 192–199.CrossRefGoogle Scholar
Currie, D. J. (1991). Energy and large-scale patterns of animal and plant-species richness. American Naturalist 137, 27–49.CrossRefGoogle Scholar
Currie, D. J. and Paquin, V. (1987). Large scale biogeographical patterns of species richness of trees. Nature 329, 326–327.CrossRefGoogle Scholar
Curtis, L. A. and Hubbard, K. M. K. (1993). Species relationships in a marine gastropod-trematode ecological system. Biological Bulletin 184, 25–35.CrossRefGoogle Scholar
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection. Facsimile 1964, Cambridge, Mass., Harvard University Press.Google Scholar
Dayton, P. K. (1971). Competition, disturbance, and community organization: The provision and subsequent utilization of space in a rocky intertidal community. Ecological Monographs 41, 351–389.CrossRefGoogle Scholar
DeAngelis, D. L. and Waterhouse, J. C. (1987). Equilibrium and nonequilibrium concepts in ecological models. Ecological Monographs 57, 1–21.CrossRefGoogle Scholar
Boer, P. J. and Reddingius, J. (1996). Regulation and Stabilization Paradigms in Population Ecology. London, Chapman and Hall.Google Scholar
Dennis, B. and Taper, B. (1994). Density dependence in time series observations of natural populations: estimation and testing. Ecological Monographs 64, 205–224.CrossRefGoogle Scholar
Diamond, J. (1973). Distributional ecology of New Guinea birds. Science 179, 759–769.CrossRefGoogle ScholarPubMed
Diamond, J.(1975). Assembly of species communities. In Cody, M. and Diamond, J., eds., Ecology and Evolution of Communities. Cambridge, Mass., Harvard University Press, pp. 342–344.Google Scholar
Diamond, J. and Case, T. J., eds., (1986). Community Ecology. New York, Harper and Row.Google Scholar
Dickman, C. R., Pressey, R. L., Lim, L. and Parnaby, H. E. (1993). Mammals of particular conservation concern in the Western Division of New South Wales. Biological Conservation 65, 219–248.CrossRefGoogle Scholar
Dobshansky, T. (1957). Discussion, from Andrewartha, H. G.: the use of conceptual models in population ecology. Cold Spring Harbour Symposia on Quantitative Biology, p. 235.Google Scholar
Dobson, S. I., Arnott, S. E. and Cottingham, K. L. (2000). The relationship in lake communities between primary productivity and species richness. Ecology 81, 2662–2679.Google Scholar
Doherty P. J. (2002). Variable replenishment and the dynamics of reef fish populations. In Sale, P. F., ed., Coral Reef Fishes. Dynamics and Diversity in a Complex Ecosystem. Amsterdam, Academic Press, pp. 327–355.Google Scholar
Doherty, P. J. and Williams, D. M. (1988). The replenishment of coral reef fish populations. Oceanography and Marine Biology 26, 487–551.Google Scholar
Dunham, A. E. (1980). An experimental study of interspecific competition between the iguanid lizards Sceloporus merriami and Urosaurus ornatus. Ecological Monographs 50, 309–330.CrossRefGoogle Scholar
Eadie, J. M. (1987). Size ratios and artifacts: Hutchinson's rule revisited. American Naturalist 129, 1–17.Google Scholar
Edmunds, J., Cushing, J. M., Constantino, R. F., Henson, S. M., Dennis, B. and Desharnais, R. A. (2003). Park's Tribolium competition experiments: a non-equilibrium species coexistence hypothesis. Journal of Animal Ecology 72, 703–712.CrossRefGoogle Scholar
Egerton, F. N. (1973). Changing concepts of the balance of nature. The Quarterly Review of Biology 48, 322–350.CrossRefGoogle Scholar
Ehrlich, P. R., Ehrlich, A. H. and Holdren, J. P. (1977). Ecoscience. Population, Resources, Environment. San Francisco, W. H. Freeman.Google Scholar
Elder, H. Y. (1979). Studies on the host-parasite relationship of the parasitic prosobranch Thyca cristallina and the asteroid starfish Linckia laevigata. Journal of Zoology 187, 369–391.CrossRefGoogle Scholar
Elton, C. (1933). The Ecology of Animals. New York, MacMillan.Google Scholar
Elton, C. S. (1946). Competition and the structure of ecological communities. Journal of Animal Ecology 15, 54–68.CrossRefGoogle Scholar
Emison, W. B., Beardsell, C. M. and Temby, I. D. (1994). The biology and status of the long-billed Corella in Australia. Proceedings of the Western Foundation of Vertebrate Zoology 5, 211–247.Google Scholar
Esch, G. E. and Fernandez, J. C. (1993). A Functional Biology of Parasitism. London, Chapman and Hall.CrossRefGoogle Scholar
Esch, G. E., Bush, A. and Aho, J. (1990). Parasite Communities: Patterns and Processes. London, New York, Chapman and Hall.Google Scholar
Farrell, E. J. (1998). Fasciola hepatica in the New England Region of New South Wales. BSc. Honours thesis, University of New England, Armidale, Australia.
Fauth, J. E., Bernardo, J., Camara, M., Resetarits, J. Jr., Buskirk, J. and McCollum, S. A. (1996). Simplifying the jargon of community ecology: a conceptual approach. American Naturalist 147, 282–286.CrossRefGoogle Scholar
Fenchel, T., ed., (1999). Ecology 1999 and Tomorrow. Copenhagen, Nordic Ecological Society Oikos.Google Scholar
Flessa, K. W. (1975). Area, continental drift and mammalian diversity. Paleobiology 1, 189–194.CrossRefGoogle Scholar
Forrester, C. E., Vance, R. R. and Steele, M. A. (2002). Simulating large-scale population dynamics using small-scale data. In Sale, P. F., ed., (2002). Coral Reef Fishes. Dynamics and Diversity in a Complex Ecosystem. Amsterdam, Academic Press, pp. 275–301.Google Scholar
Francis, A. P. and Currie, D. J. (1998). Global patterns of tree species richness in moist forests: another look. Oikos 81, 598–602.CrossRefGoogle Scholar
Francis, A. P. and Currie, D. J.(2003). A globally consistent richness-climate relationship for angiosperms. American Naturalist 161, 523–536.CrossRefGoogle ScholarPubMed
Freeman, S. and Herron, J. C. (2004). Evolutionary Analysis. 3rd edn. Upper Saddle River, NJ, Pearson Prentice Hall.Google Scholar
Fried, B. and Diaz, V. (1987). Site-finding and pairing of Echinostoma revolutum (Trematoda) on the chick chorioallantois. Journal of Parasitology 73, 546–548.CrossRefGoogle ScholarPubMed
Fried, B., Tancer, R. B. and Fleming, S. J. (1980). In vitro pairing of Echinostoma revolutum (Trematoda) metacercariae and adults, and characterisation of worm products involved in chemoattraction. Journal of Parasitology 66, 1014–1018.CrossRefGoogle Scholar
Gaston, K. J. and Blackburn, T. M. (1999). A critique of macroecology. Oikos 84, 353–368.CrossRefGoogle Scholar
Gause, G. F. (1935). The Struggle for Existence. Baltimore, Williams & Wilkins.Google Scholar
Geets, A., Coene, H. and Ollevier, F. (1997). Ectoparasites of the whitespotted rabbitfish, Siganus sutor (Valenciennes, 1835) off the Kenyan coast: distribution within the host population and site selection on the gills. Parasitology 115, 69–79.CrossRefGoogle ScholarPubMed
Geller, W. and Gude, H. (1989). Lake Constance – the largest German lake. In Lampert, W. and Rothaupt, K. O., eds., Limnology in the FRG. 24th Congress of the International Association of Theoretical and Applied Limnology.
Gilbert, F. S. (1980). The equilibrium theory of island geography: fact or fiction. Journal of Biogeography 7, 209–235.CrossRefGoogle Scholar
Giller, P. S. and Gee, J. H. R. (1987). The analysis of community organization: the influence of equilibrium, scale and terminology. In Gee, J. H. R. and Giller, P. S., eds., Organization of Communities Past and Present. Oxford, Blackwell Scientific, pp. 519–542.Google Scholar
Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. and Brown, J. H. (2002). Effects of size and temperature on developmental time. Nature 417, 70–73.CrossRefGoogle ScholarPubMed
Gleason, H. A. (1926). The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club 53, 7–26.CrossRefGoogle Scholar
Goater, T. M., Esch, G. W. and Bush, A. O. (1987). Helminth parasites of sympatric salamanders: ecological concepts at infracommunity, component and compound community levels. American Midland Naturalist 118, 289–300.CrossRefGoogle Scholar
Godfray, H. C. J. (1994). Parasitoids: Behavioural and Evolutionary Ecology. Princeton, N.J., Princeton University Press.Google Scholar
Godfray, H. C. J. and Lawton, J. H. (2001). Scale and species numbers. Trends in Ecology and Evolution 16, 400–404.CrossRefGoogle ScholarPubMed
Gosper D. M. (1992) The ecology of parasites of Anguilla reinhardtii (long-finned eel) and Anguilla australis (short-finned eel). BSc Honours thesis, University of New England, Armidale, Australia.
Gotelli, N. J. and Graven, G. R. (1996). Null Models in Ecology. Washington, D.C., Smithsonian Institution Press.Google Scholar
Gotelli, N. J. and McCabe, D. J. (2002). Species co-occurrence: a meta-analysis of J. M. Diamond's assembly rules model. Ecology 83, 2091–2096.CrossRefGoogle Scholar
Gotelli, N. J., and Rohde, K. (2002). Co-occurrence of ectoparasites of marine fishes: null model analysis. Ecology Letters 5, 86–94.CrossRefGoogle Scholar
Grant, P. R. (1972). Convergent and divergent character displacement. Biological Journal of the Linnaean Society 4, 39–68.CrossRefGoogle Scholar
Grant, P. R.(1975). The classical case of character displacement. Evolution Biologica 8, 237–337.Google Scholar
Grant, P. R. and Schluter, D. (1984). Interspecific competition inferred from patterns of guild structure. In Strong, D. R. Jr., Simberloff, D., Abele, L. G. and Thistle, A. B., eds., Ecological Communities: Conceptual Issues and the Evidence. Princeton, N.J., Princeton University Press, pp. 201–231.CrossRefGoogle Scholar
Grime, J. P. (1979). Plant Strategies and Vegetation Processes. London, Wiley.Google Scholar
Grinnell, J. (1904). The origin and distribution of the chestnut-backed chickadee. Auk 21, 364–382.CrossRefGoogle Scholar
Hanski, I. (1997). Predictive and practical metapopulation models: the incidence function approach. In Tilman, D. and Kareiva, P. (1997). Spatial Ecology: the Role of Space in Population Dynamics and Interspecific Interactions. Princeton N.J., Monographs in Population Biology, no. 30. Princeton University Press, pp. 21–45.Google Scholar
Hanski, I.(1999). Metapopulation Ecology. Oxford, Oxford University Press.Google Scholar
Hanski, I. and Gilpin, M. E. (1991). Metapopulation dynamics: a brief history and conceptual domain. In Gilpin, M. and Hanski, I., eds., Metapopulation Dynamics: Empirical and Theoretical Investigations. London, Academic Press, pp. 3–16.Google Scholar
Hanski, I. and Kuussaari, M. (1995). Butterfly metapopulation dynamics. In Cappucino, N. and Price, P. W., eds., Population Dynamics. New Approaches and Synthesis. San Diego, Academic Press, pp. 149–171.Google Scholar
Hanski, I. and Ovaskainen, O. (2002). Extinction debt at extinction threshold. Conservation Biology 16, 666–673.CrossRefGoogle Scholar
Hanski, I. I., Woiwod, I. and Perry, J. (1993). Density dependence, population persistence, and largely futile arguments. Oecologia 95, 595–598.CrossRefGoogle ScholarPubMed
Harmelin-Vivien, M. L. (2002). Energetics and fish diversity on coral reefs. In Sale, P. F., ed., Coral Reef Fishes. Dynamics and Diversity in a Complex Ecosystem. Amsterdam, Academic Press, pp. 265–274.Google Scholar
Harris, G. P. (1986). Phytoplankton Ecology. Structure, Function and Fluctuation. London, Chapman and Hall.CrossRefGoogle Scholar
Hassell, M. P. and May, R. M., eds., (1990). Population, Regulation and Dynamics. Philosophical Transactions of the Royal Society of London, Series B 330, 121–304.
Haukisalmi, V. and Henttonen, H. (1993a). Coexistence in helminths of the bank vole Clethrionomys glareolus. I. Patterns of co-occurrence. Journal of Animal Ecology 62, 221–229.CrossRefGoogle Scholar
Haukisalmi, V. and Henttonen, H.(1993b). Coexistence in helminths of the bank vole Clethrionomys glareolus. II. Intestinal distribution and interspecific interactions. Journal of Animal Ecology 62, 230–238.CrossRefGoogle Scholar
Hawkins, A. (1993). Complex interactions between dispersal and dynamics: lessons from coupled logistic equations. Ecology 74, 1362–1372.Google Scholar
Hawkins, B. A. and Compton, S. G. (1992). African fig wasp communities: undersaturation and latitudinal gradients in species richness. Journal of Animal Ecology 61, 361–372.CrossRefGoogle Scholar
Hawkins, B. A., Field, R., Cornell, H. V.et al. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117.CrossRefGoogle Scholar
Hayward, C. J., Perera, K. M. L. and Rohde, K. (1998). Assemblages of ectoparasites of a pelagic fish, slimy mackerel (Scomber australasicus) from Southeastern Australia. International Journal for Parasitology 28, 263–273.CrossRefGoogle Scholar
Hendrickson, H. T. (1978). Sympatric speciation: evidence?Science 200, 345–346.CrossRefGoogle ScholarPubMed
Hengeveld, R. (1994). Biodiversity – the diversification of life in a non-equilibrium world. Biodiversity Letters 2, 1–10.CrossRefGoogle Scholar
Hengeveld, R. and Walter, G. H. (1999). The two coexisting ecological paradigms. Acta Biotheoretica 47, 141–170.CrossRefGoogle Scholar
Hillebrand, H. (2004). On the generality of the latitudinal diversity gradient. American Naturalist 163, 192–211.CrossRefGoogle ScholarPubMed
Hine, P. M. (1978) Distribution of some parasites of freshwater eels in New Zealand. New Zealand Journal of Marine and Freshwater Research 12, 179–187.CrossRefGoogle Scholar
Hine, P. M.(1980a) Distribution of helminths in the digestive tracts of New Zealand freshwater eels. 1. Distribution of digeneans. New Zealand Journal of Marine and Freshwater Research 14, 329–338.CrossRefGoogle Scholar
Hine, P. M.(1980b) Distribution of helminths in the digestive tracts of New Zealand freshwater eels. 2. Distribution of nematodes. New Zealand Journal of Marine and Freshwater Research 14, 339–347.CrossRefGoogle Scholar
Hine, P. M., Francis, R. I. C. C. (1980) Distribution of helminths in the digestive tracts of New Zealand freshwater eels. 3. Interspecific associations and conclusions. New Zealand Journal of Marine and Freshwater Research 14, 349–356.CrossRefGoogle Scholar
Hixon, M. A. and Webster, M. S. (2002). Density dependence in reef fish populations. In Sale, P. F., ed., Coral Reef Fishes. Dynamics and Diversity in a Complex Ecosystem. Amsterdam, Academic Press, pp. 303–325.Google Scholar
Holbrook, S. J. and Schmitt, R. J. (2002). Competition for shelter space causes density-dependent predation mortality in damselfishes. Ecology 83, 2855–2868.CrossRefGoogle Scholar
Holmes, J. C. (1973). Site selection by parasitic helminths: interspecific interactions, site segregation, and their importance to the development of helminth communities. Canadian Journal of Zoology 51, 333–347.CrossRefGoogle ScholarPubMed
Holmes, J. C.(1987). The structure of helminth communities. International Journal for Parasitology 17, 203–208.CrossRefGoogle ScholarPubMed
Holmes, J. C.(1990). Helminth communities in marine fishes. In Esch, G., Bush, A. and Aho, J., eds., Parasite Communities: Patterns and Processes. London, New York, Chapman and Hall, pp. 101–130.Google Scholar
Holmes, J. C. and Price, P. W. (1986). Communities of parasites. In Kikkawa, J. and Anderson, D. J., eds., Community Ecology: Pattern and Process. Melbourne, Blackwell Scientific Publishing, pp. 187–213.Google Scholar
Holyoak, M. and Lawton, J. H. (1993). Comment arising from a paper by Wolda and Dennis: using and interpreting the results of tests for density dependence. Oecologia 95, 592–594.CrossRefGoogle ScholarPubMed
Hubbell, S. P. (1980). Seed predation and the coexistence of tree species in tropical forests. Oikos 35, 214–229.CrossRefGoogle Scholar
Hubbell, S. P.(2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton, N.J., Princeton University Press.
Hubbell, S. P. and Foster, R. B. (1986). Biology, chance, and history and the structure of tropical rain forest tree communities. In Diamond, J. and Case, T. J., eds., Community Ecology. New York, Harper and Row, pp. 314–329.Google Scholar
Hubbell, S. P., Condit, R. and Foster, R. B. (1990). Presence and absence of density dependence in a neotropical tree community. Philosophical Transactions of the Royal Society London Series B330, 269–281.CrossRef
Hubbell, S. P., Foster, R. B., O‘Brien, S. T., Harms, K. E., Condit, R., Weschler, B., Wright, S. J. and Loo de Lao, S. (1999). Light gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283, 554–557.CrossRefGoogle Scholar
Huffaker, C. B. (1958). Experimental studies on predation: dispersion factors and predator–prey oscillations. Hilgardia 27, 343–383.CrossRefGoogle Scholar
Hughes, L. (2003). Climate change and Australia: trends, projections and impacts. Australian Ecology 28, 423–443.CrossRefGoogle Scholar
Hughes, T. P., Bellwood, D. R. and Connolly, S. R. (2002). Biodiversity hotspots, centres of endemicity, and the conservation of coral reefs. Ecology Letters 5, 775–784.CrossRefGoogle Scholar
Hutchinson, G. E. (1948). Circular causal systems in ecology. Annals of the New York Academy of Sciences 50, 221–246.CrossRefGoogle ScholarPubMed
Hutchinson, G. E.(1957). Concluding remarks. Cold Spring Harbour Symposium on Quantitative Biology 22, 415–427.CrossRefGoogle Scholar
Hutchinson, G. E.(1959). Homage to Santa Rosalia, or why are there so many kinds of animals?American Naturalist 93, 145–159.CrossRefGoogle Scholar
Hutchinson, G. E.(1961). The paradox of the plankton. American Naturalist 95, 137–145.CrossRefGoogle Scholar
Jablonski, D. (1991). Extinctions: a paleontological perspective. Science 253, 754–757.CrossRefGoogle ScholarPubMed
Jablonski, D.(1993). The tropics as a source of evolutionary novelty through geological time. Nature 364, 142–144.CrossRefGoogle Scholar
Jablonski, D.(1999). The future of the fossil record. Science 284, 2114–2116.CrossRefGoogle ScholarPubMed
Jablonski, D. and Sepkoski, J. J. Jr. (1996). Paleobiology, community ecology, and scales of ecological pattern. Ecology 77, 1367–1378.CrossRefGoogle ScholarPubMed
Jablonski, D., Roy, K., Valentine, J. W., Price, R. M. and Anderson, P. S. (2003). The impact of the pull of the Recent on the history of marine diversity. Science 300, 1133–1135.CrossRefGoogle ScholarPubMed
Jackson, J. B. C. and Johnson, K. G. (2001). Measuring past biodiversity. Science 293, 2401–2404.CrossRefGoogle ScholarPubMed
Janovy, J. Jr., Clopton, R. E. and Percival, T. J. (1992). The roles of ecological and evolutionary influences in providing structure to parasite species assemblages. Journal of Parasitology 78, 630–640.CrossRefGoogle ScholarPubMed
Janovy, J. Jr., Clopton, R. E., Clopton, D. A., Snyder, S. D., Efting, A. and Krebs, L. (1995). Species density distributions as null models for ecologically significant interactions of parasite species in an assemblage. Ecological Modelling 77, 189–196.CrossRefGoogle Scholar
Jarkovsky, J., Morand, S. and Simková, A. (2004). Reproductive barriers between congeneric monogenean parasites (Dactylogyrus: Monogenea): attachment apparatus morphology or copulatory organ incompatibility?Parasitology Research 92, 95–105.CrossRefGoogle ScholarPubMed
Källander, H. (1981). The effects of provision of food in winter on a population of the Great Tit Parus major and the Blue Tit P. caeruleus. Ornis Scandinaviae 12, 244–248.CrossRefGoogle Scholar
Kamegai, S. (1986). Studies on Diplozoon nipponicum Goto, 1891. The gathering phenomenon of diporpae and the effect of cortisone acetate on the union of diporpae. In Howell, M. J., ed., Parasitology-Quo Vadit 2. Handbook, program and abstracts. 6th International Congress of Parasitology, Australian Academy of Science, Canberra, p. 161.Google Scholar
Kareiva, P. (1994). Diversity begets productivity. Nature 368, 686–687.CrossRefGoogle Scholar
Kaspari, M., Ward, P. S. and Yuan, M. (2004). Energy gradients and the geographical distribution of local ant diversity. Oecologia 140, 407–413.CrossRefGoogle ScholarPubMed
Kauffman, S. A. (1993). The Origins of Order. Self-organization and Selection in Evolution. New York, Oxford, Oxford University Press.Google Scholar
Kawano, K. (2002). Character displacement in giant rhinoceros beetles. American Naturalist 159, 255–271.CrossRefGoogle ScholarPubMed
Kearn, G. C. (1970). The production, transfer and assimilation of spermatophores by Entobdella soleae, a monogenean kin parasite of the common sole. Parasitology 60, 301–311.CrossRefGoogle Scholar
Kearn, G. C.(1988). The monogenean skin parasite Entobdella soleae: movement of adults and juveniles from host to host (Solea solea). International Journal for Parasitology 18, 313–319.CrossRefGoogle Scholar
Kennedy, C. R. (1985). Site segregation by species of Acanthocephala in fish, with special reference to eels, Anguilla anguilla. Parasitology 90, 375–390.CrossRefGoogle Scholar
Kennedy, C. R.(1990). Helminth communities in freshwater fish: structured communities or stochastic assemblages. In Esch, G., Bush, A. O. and Aho, J. M., eds., Parasite Communities: Patterns and Processes. London, New York, Chapman and Hall, pp. 131–156.Google Scholar
Kennedy, C. R.(1992). Field evidence for interactions between the acanthocephalans Acanthocephalus anguillus and A. luci in eels Anguilla anguilla. Ecological Parasitology 11, 122–134.Google Scholar
Kennedy, C. R.(1995). Richness and diversity of macroparasite communities in tropical eels Anguilla reinhardtii in Queensland, Australia. Parasitology 111, 233–245.CrossRefGoogle Scholar
Kennedy, C. R. and Guégan, J. F., (1994). Regional versus local helminth parasite richness in British freshwater fish: saturated or unsaturated parasite communities?Parasitology 109, 175–185.CrossRefGoogle ScholarPubMed
Kennedy, C. R. and Guégan, J. F.(1996). The number of niches in intestinal helminth communities of Anguilla anguilla: are there enough spaces for parasites?Parasitology 113, 293–302.CrossRefGoogle Scholar
Kennedy, C. R., Di Cave, D., Berrilli, F. and Orecchia, P. (1997). Composition and structure of helminth communities in eels Anguilla anguilla from Italian lagoons. Journal of Helminthology 71, 35–40.CrossRefGoogle Scholar
Keymer, A. E. (1982). Density-dependent mechanisms in the regulation of intestinal helminth populations. Parasitology 84, 573–587.CrossRefGoogle ScholarPubMed
Kiener, A. and Richard-Vindard, G. (1972). Fishes of the continental waters of Madagascar. In Battistini, R. and Richard-Vindard, G., eds., Biogeography and Ecology in Madagascar. The Hague, W. Junk B.V. Publishing, pp. 477–499.CrossRefGoogle Scholar
Kimura, M. (1983). The Neutral Theory of Molecular Evolution. New York, Cambridge University Press.CrossRefGoogle Scholar
Kingsland, S. (1995). Modeling Nature, 2nd edn. Chicago, University of Chicago Press.Google Scholar
Koch, M. (2003). Faunal survey. II. The distribution of digenean trematodes within the New England Tablelands. Memoirs of the Queensland Museum.
Kormondy, E. J. (1969). Concepts of Ecology. Englewood Cliffs, N. J., Prentice-Hall.Google Scholar
Körner, C. (2000). Why are there global gradients in species richness? Mountains might hold the answer. Trends in Ecology and Evolution 15, 513–514.CrossRefGoogle Scholar
Koszowski, J. (1999). Adaptation: a life history perspective. Oikos 86, 185–194.Google Scholar
Krebs, C. J. (1985). Ecology. The Experimental Analysis of Distribution and Abundance. New York, Harper and Row.Google Scholar
Krebs, C. J.(1991). The experimental paradigm and long-term population studies. Ibis 133, 3–8.CrossRefGoogle Scholar
Krebs, C. J.(2001). Ecology: the Experimental Analysis of Distribution and Abundance. 5th edn. San Francisco, Addison Wesley.Google Scholar
Kube, J., Kube, S. and Dierschke, V. (2002). Spatial and temporal variations in the trematode component community of the mudsnail Hydrobia ventrosa in relation to the occurrence of waterfowl as definitive hosts. Journal of Parasitology 88, 1075–1086.CrossRefGoogle ScholarPubMed
Kuris, A. M. (1990). Guild structure of larval trematodes in molluscan hosts: prevalence, dominance and significance of competition. In Esch, G., Bush, A. and Aho, J., eds., Parasite Communities: Patterns and Processes. London, Chapman and Hall, pp. 69–100.Google Scholar
Kuris, A. M. and Lafferty, K. D. (1994). Community structure: larval trematodes in snail hosts. Annual Review of Ecology and Systematics 25, 189–217.CrossRefGoogle Scholar
Lafferty, K. D., Sammond, D. T. and Kuris, A. M. (1994). Analysis of larval trematode communities. Ecology 75, 2275–2285.CrossRefGoogle Scholar
Lambert, A. and Maillard, C. (1974). Parasitisme branchial simultane par deux especies de Diplectanum Diesing, 1858 (Monogenea, Monopisthocotylea) chez Dicentrarchus labrax (L., 1758) (Teleosteen). Comptes Rendus Academie de Sciences, Paris, 279 (D), 1345–1347.
Lambert, A. and Maillard, C.(1975). Repartition branchiale de deux monogenes: Diplectanum aequans (Wagener 1857) Diesing, 1858 et Diplectanum laubieri Lambert et Maillard, 1974 (Monogenea, Monopisthocotylea) parasites simultanes de Dicentrarchus labrax (teleosteen). Annales de Parasitologie Humaine et Comparee50, 691–699.CrossRef
Latham, R. E. and Ricklefs, R. E. (1993). Global patterns of tree species richness in moist forests: energy-diversity theory does not account for variation in tree species richness. Oikos 67, 325–333.CrossRefGoogle Scholar
Lawton, J. H. (1982). Vacant niches and unsaturated communities: a comparison of bracken herbivores at sites on two continents. Journal of Animal Ecology 51, 573–595.CrossRefGoogle Scholar
Lawton, J. H.(1984a). Herbivore community organization: general models and specific tests with phytophagous insects. In Price, P. W., Slobodchikoff, C. N. and Gaud, W. S., eds., A New Ecology. Novel Approaches to Interactive Systems. New York, John Wiley & Sons, pp. 329–352.Google Scholar
Lawton, J. H.(1984b). Non-competitive populations, non-convergent communities, and vacant niches: the herbivores of bracken. In Strong, D. R. Jr., Simberloff, D., Abele, L. G. and Thistle, A. B., eds., Ecological Communities: Conceptual Issues and the Evidence. Princeton, N.J., Princeton University Press, pp. 67–101.CrossRefGoogle Scholar
Lawton, J. H.(1999). Are there general laws in ecology?Oikos 84, 177–192.CrossRefGoogle Scholar
Lawton, J. H.(2000). Community Ecology in a Changing World. Nordbünte, Oldendorf, Ecology Institute.Google Scholar
Lawton, J. H., and MacGarvin, M. (1986). The organization of herbivore communities. In Kikkawa, J. and Anderson, D. J., eds., Community Ecology: Pattern and Process. Melbourne, Blackwell Scientific Publishing, pp. 163–186.Google Scholar
Lawton, J. H. and Strong, D. R. (1981). Community patterns and competition in folivorous insects. American Naturalist 118, 317–338.CrossRefGoogle Scholar
Lawton, J. H., Lewinsohn, T. M. and Compton, S. G. (1993). Patterns of diversity for insect herbivores on bracken. In Ricklefs, R. E. and Schluter, D., eds., Species Diversity in Ecological Communities. Historical and Geographical Perspectives. Chicago, University of Chicago Press, pp. 178–184.Google Scholar
Lello, J., Boag, B., Fenton, A., Stevenson, I. R. and Hudson, P. J. (2004). Competition and mutualism among the gut helminths of a mammalian host. Nature 428, 840–845.CrossRefGoogle ScholarPubMed
Leslie, P. H., Park, T. and Mertz, D. B. (1968). The effect of varying the initial numbers on the outcome of competition between two Tribolium species. Journal of Animal Ecology 37, 9–23.CrossRefGoogle Scholar
Lester, R. J. G. and Adams, J. R. (1974). Gyrodactylus alexanderi: reproduction, mortality, and effect on its host Gasterosteus aculeatus. Canadian Journal of Zoology 52, 827– 833.CrossRefGoogle ScholarPubMed
Levin, S. A. (1970). Community equilibria and stability, and an extension of the competitive exclusion principle. American Naturalist 104, 413–423.CrossRefGoogle Scholar
Levin, S. A.(1992). The problem of pattern and scale in ecology. Ecology 73, 1943–1967.CrossRefGoogle Scholar
Levin, S. A.(1998). Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1, 431–436.CrossRefGoogle Scholar
Levin, S. A.(2000). Multiple scales and the maintenance of biodiversity. Ecosystems 3, 498–506.CrossRefGoogle Scholar
Levin, S. A. and Paine, R. T. (1974). Disturbance, patch formation, and community structure. Proceedings of the National Academy of Science USA 71, 2744–2747.CrossRefGoogle ScholarPubMed
Levin, S. A. and Pimentel, D. (1981). Selection of intermediate rates of increase in parasite–host systems. American Naturalist 117, 308–315.CrossRefGoogle Scholar
Likens, G. E. (1975). Primary production of inland ecosystems. In Lieth, H. and Whittaker, R. H., eds., Primary Productivity in the Biosphere. Berlin, Springer Verlag, pp. 185–202.CrossRefGoogle Scholar
Lindström, J., Lundberg, P., Ranta, E. and Kaitala, V. (1999). Oikos, 50 years of ecology. Oikos 87, 462–475.CrossRefGoogle Scholar
Littlewood, D. T. J., Rohde, K., Bray, R. A. and Herniou, E. A. (1999). Phylogeny of the Platyhelminthes and the evolution of parasitism. Biological Journal of the Linnaean Society 68, 257–287.CrossRefGoogle Scholar
Loveridge, A. J. and Macdonald, D. W. (2003). Niche separation in sympatric jackals (Canis mesomelas and Canis adustus). Journal of Zoology (London) 259, 143–153.CrossRefGoogle Scholar
Lowman, M. D. (1985). Temporal and spatial variability in insect grazing of the canopies of five Australian rainforest species. Australian Journal of Ecology 10, 7–24.CrossRefGoogle Scholar
Lozano, S. and Zapata, F. A. (2003). Short-term temporal patterns of early recruitment of coral reef fishes in the tropical eastern Pacific. Marine Biology 142, 399–409.CrossRefGoogle Scholar
MacArthur, R. H. (1972). Geographic Ecology: Patterns in the Distribution of Species. New York, Harper and Row.Google Scholar
MacArthur, R. H. and Levins, R. (1967). The limiting similarity, convergence and divergence of coexisting species. American Naturalist 101, 377–385.CrossRefGoogle Scholar
MacArthur, R. H. and Wilson, E. O. (1963). An equilibrium theory of insular zoogeography. Evolution 17, 373–387.CrossRefGoogle Scholar
MacArthur, R. H. and Wilson, E. O.(1967). The Theory of Island Biogeography. Princeton, N.J., Princeton University Press.
Mahon, R. (1984). Divergent structure in fish taxocenes of north temperate streams. Canadian Journal of Fisheries and Aquatic Science 41, 330–350.CrossRefGoogle Scholar
Marcogliese, D. J. and Cone, D. K. (1993) What metazoan parasites tell us about the evolution of American and European eels. Evolution 47, 1632–1635.CrossRefGoogle ScholarPubMed
Marcogliese, D. J. and Cone, D. K.(1996) On the distribution and abundance of eel parasites in Nova Scotia: influence of pH. Journal of Parasitology 82, 389–399.CrossRefGoogle ScholarPubMed
Marcogliese, D. J. and Cone, D. K.(1998). Comparison of richness and diversity of macroparasite communities among eels from Nova Scotia, the United Kingdom and Australia. Parasitology 116, 73–83.CrossRefGoogle ScholarPubMed
Martin, P. R. and McKay, J. K. (2004). Latitudinal variation in genetic divergence of populations and the potential for future speciation. Evolution 58, 938–945.CrossRefGoogle ScholarPubMed
Martin, A. P and Palumbi, S. R. (1993). Body size, metabolic rate, generation time, and the molecular clock. Proceedings of the National Academy of Science USA 90, 4087–4091.CrossRefGoogle ScholarPubMed
Martins, R. P., Lewinsohn, T. M. and Lawton, J. H. (1995). First survey of insects feeding on Pteridium aquilinum in Brazil. Rev. Bras. Entomol. 39, 151–156.Google Scholar
May, R. M. (1973). Stability and Complexity in Model Ecosystems. Princeton, N.J., Princeton University Press.Google ScholarPubMed
May, R. M.(1975). Deterministic models with chaotic dynamics. Nature 261, 165–166.CrossRefGoogle Scholar
May, R. M.(1981). The role of theory in ecology. American Zoologist 21, 903–910.CrossRefGoogle Scholar
May, R. M.(1986). The search for patterns in the balance of nature: advances and retreats. Ecology 67, 1115–1126.CrossRefGoogle Scholar
May, R. M. and Anderson, R. M. (1978). Regulation and stability of host-parasite population interactions. II. Destabilizing processes. Journal of Animal Ecology 47, 249–267.CrossRefGoogle Scholar
May, R. M. and MacArthur, R. H. (1972). Niche overlap as a function of environmental variability. Proceedings of the National Academy of Sciences USA 69, 1109–1113.CrossRefGoogle ScholarPubMed
Smith, Maynard J. (1974). Models in Ecology. Cambridge, Cambridge University Press.Google Scholar
Mayr, E. (1976). Bird speciation in the tropics. In Mayr, E., ed., Evolution and the Diversity of Life. Cambridge Mass. and London, Belknap Press, pp. 176–187.Google Scholar
McGill, B. J. (2003). A test of the unified neutral theory of biodiversity. Nature 422, 881–885.CrossRefGoogle ScholarPubMed
McGlone, M. S. (1996). When history matters: scale, time, climate and tree diversity. Global Ecology and Biogeography Letters 5, 309–314.CrossRefGoogle Scholar
McIntosh, R. P. (1987). Pluralism in ecology. Annual Review of Ecology and Systematics 18, 321–341.CrossRefGoogle Scholar
Middleton, D. (1993). Persistence of managed populations: simple models and an application to the Islay Barnacle Goose population. Dissertation. Department of Statistics and Modelling Science. University of Strathclyde, Glasgow, Scotland (cit. Murdock 1994).
Miller, R. S. (1967). Pattern and Process in Competition. Advances in Ecological Research 4, London, Academic Press, pp. 1–74.CrossRefGoogle Scholar
Molofsky, J. and Bever, J. D. (2004). A new kind of ecology?BioScience 54, 440–446.CrossRefGoogle Scholar
Moloney, K. A. and Levin, S. A. (1996). The effects of disturbance architecture on landscape-level population dynamics. Ecology 77, 375–394.CrossRefGoogle Scholar
Mooers, A. O. and Harvey, P. H. (1994). Metabolic rate, generation time and the rate of molecular evolution in birds. Molecular Phylogeny and Evolution 3, 344–350.CrossRefGoogle ScholarPubMed
Mora, C., Chittaro, P. M., Sale, P. F., Kritzer, J. P. and Ludsin, S. A. (2003). Patterns and processes in reef fish diversity. Nature 42, 933–936.CrossRefGoogle Scholar
Morand, S., Poulin, R., Rohde, K. and Hayward, C. J. (1999). Aggregation and species coexistence of ectoparasites of marine fishes. International Journal for Parasitology 29, 663–672.CrossRefGoogle ScholarPubMed
Morand, S., Rohde, K. and Hayward, C. J. (2002). Order in parasite communities of marine fish is explained by epidemiological processes. Parasitology 124, S57–S63.CrossRefGoogle ScholarPubMed
Mouillot, D., George-Nascimento, M. and Poulin, R. (2003), How parasites divide resources: a test of the niche apportionment hypothesis. Journal of Animal Ecology 72, 757–764.CrossRefGoogle Scholar
Moulton, M. P. and Pimm, S. L. (1987). Morphological assortment in introduced Hawaiian passerines. Evolutionary Ecology 1, 113–124.CrossRefGoogle Scholar
Moyle, P. B. and Herbold, B. (1987). Life-history patterns and community structure in stream fishes of western North America: comparisons with eastern North America and Europe. In Matthews, W. J, and Heins, D. C., eds., Community and Evolutionary Ecology of North American Stream Fishes. Norman, University of Oklahoma Press, pp. 25–32.Google Scholar
Murdoch, W. W. (1994). Population regulation in theory and practice. Ecology 75, 271–287.CrossRefGoogle Scholar
Myers, N. (1997). The niche diversity of biodiversity issues. In Reaka-Kudla, M. L., Wilson, D. E. and Wilson, E. U., eds., Biodiversity II. Understanding and Perfecting our Biological Resources. Washington, Joseph Henry Press, pp. 125–138.Google Scholar
Neubert, M. G. (1997). A simple population model with qualitatively uncertain dynamics. Journal of Theoretical Biology 189, 399–411CrossRefGoogle ScholarPubMed
Nichols, S. P. (1996). Nematodes of rabbits and hares of eastern Australia. BSc. Honours thesis, University of New England, Armidale, Australia.
Nicholson, A. J. (1933). The balance of animal populations. Journal of Animal Ecology 2, 132–178.CrossRefGoogle Scholar
Nicholson, A. J.(1954). An outline of the dynamics of animal populations. Australian Journal of Zoology 2, 9–65.CrossRefGoogle Scholar
Nisbet, R. M. and Gurney, W. S. C. (1982). Modelling Fluctuating Populations. Chichester, Wiley.Google Scholar
Nollen, P. M. (1993). Echinostoma trivolvis: mating behavior of adults raised in hamsters. Parasitology Research 79, 130–132.CrossRefGoogle ScholarPubMed
Norton, J., Lewis, J. W. and Rollinson, D. (2003). Parasite infracommunity diversity in eels: a reflection of local component community diversity. Parasitology 127, 475–482.CrossRefGoogle ScholarPubMed
Novotny, V., Basset, Y., Miller, S. E.et al. (2002). Low host specificity of herbivorous insects in a tropical forest. Nature 416, 841–844.CrossRefGoogle Scholar
Nowak, M. A. and May, R. M. (1994). Superinfection, metapopulation dynamics, and the evolution of diversity. Journal of Theoretical Biology 170, 95–114.Google Scholar
Oberdorff, T. B., Hugueny, A., Compin, A. and Belkessam, D. (1998). Non-interactive fish communities in the coastal streams of North-western France. Journal of Animal Ecology 67, 472–484.CrossRefGoogle Scholar
Orians, G. H. (1962). Natural selection and ecological theory. American Naturalist 46, 257–263.CrossRefGoogle Scholar
Ovaskainen, O. and Hanski, I. (2002). Transient dynamics in metapopulation response to perturbation. Theoretical Population Biology 61, 285–295.CrossRefGoogle ScholarPubMed
Paine, R. T. (2002). Advances in ecological understanding: by Kuhnian revolution or conceptual evolution?Ecology 83, 1553–1559.CrossRefGoogle Scholar
Palmer, M. W. (2001). Extending the quasi-neutral concept. Folia Geobotanica 36, 25–33.CrossRefGoogle Scholar
Pandian, T. J. and Vivekanadan, E. (1985). Energetics of feeding and digestion. In Tyler, P. and Calow, P., eds., Fish Energetics – New Perspectives. London, Croom Helm, pp. 99–124.CrossRefGoogle Scholar
Park, T. (1954). Experimental studies of interspecies competition. II. Temperature, humidity, and competition in two species of Tribolium. Physiological Zoology 27, 177–238.CrossRefGoogle Scholar
Pence, D. B. (1990). Helminth communities of mammalian hosts: concepts at the infracommunity, component and compound community. In Esch, G., Bush, A. and Aho, J., eds., Parasite Communities: Patterns and Processes. London, New York, Chapman and Hall, pp. 233–260.Google Scholar
Petraitis, P. S., Latham, R. E. and Niesenbaum, R. A. (1989). The maintenance of species diversity by disturbance. Quarterly Review of Biology 64, 393–418.CrossRefGoogle Scholar
Pianka, E. R. (1973). The structure of lizard communities. Annual Review of Ecology and Systematics 4, 53–74.CrossRefGoogle Scholar
Pianka, E. R.(1974). Evolutionary Ecology. 2nd edn. New York, Harper and Row.Google Scholar
Pianka, E. R.(1983). Evolutionary Ecology. 3rd edn. New York, Harper and Row.Google Scholar
Pickett, S. T. A. (1980). Non-equilibrium coexistence of plants. Bulletin of the Torrey Botanical Club 107, 238–248.CrossRefGoogle Scholar
Pielou, E. C. (1969). An Introduction to Mathematical Ecology. New York, Wiley-Interscience.Google Scholar
Pielou, E. C.(1975). Ecological Diversity. New York, Wiley-Interscience.Google Scholar
Pielou, E. C.(1979). Biogeography. New York, Wiley-Interscience.Google Scholar
Pimm, S. L. (1978). An experimental approach to the effects of predictability on community structure. American Zoologist 18, 797–808.CrossRefGoogle Scholar
Pimm, S. L.(1991). The Balance of Nature?Chicago and London, The University of Chicago Press.Google Scholar
Poulin, R. (1998). Evolutionary Ecology of Parasites. London, Chapman and Hall.Google Scholar
Poulin, R. and Mouillot, D. (2003). Host introductions and the geography of parasite taxonomic diversity. Journal of Biogeography 30, 1–9.CrossRefGoogle Scholar
Poulin, R. and Rohde, K. (1997). Comparing the richness of metazoan ectoparasite communities of marine fishes: controlling for host phylogeny. Oecologia 110, 278–283.CrossRefGoogle ScholarPubMed
Poulin, R., Mouillot, D. and George-Nascimento, M. (2003). The relationship between species richness and productivity in parasite communities. Oecologia 137, 277–285.CrossRefGoogle ScholarPubMed
Price, P. W. (1977). General concepts of the evolutionary biology of parasites. Evolution 31, 405–420.CrossRefGoogle ScholarPubMed
Price, P. W.(1980). Evolutionary Biology of Parasites. Princeton, N.J., Princeton University Press.Google ScholarPubMed
Price, P. W.(1983). Communities of specialists: Vacant niches in ecological and evolutionary time. In Strong, D., Simberloff, D. and Abele, L., eds., Ecological Communities: Conceptual Issues and the Evidence. Princeton, N.J., Princeton University Press.Google Scholar
Price, P. W.(1984). Alternative paradigms in community ecology. In Price, P. W., Slobodchikoff, C. N. and Gaud, W. S., eds., A New Ecology. Novel Approaches to Interactive Systems. New York, Chichester, Brisbane, Toronto, Singapore, John Wiley & Sons, pp. 353–383.Google Scholar
Price, P. W., Gaud, W. S, and Slobodchikoff, C. N. (1984). Introduction: is there a new ecology? In Price, P. W., Slobodchikoff, C. N. and Gaud, W. S., eds., A New Ecology. Novel Approaches to Interactive Systems. New York, John Wiley & Sons, pp. 1–11.Google Scholar
Price, P. W., Slobodchikoff, C. N. and Gaud, W. S., eds., (1984). A New Ecology. Novel Approaches to Interactive Systems. New York, John Wiley & Sons.Google Scholar
Priddle, D. (1987). The mobility and habitat utilisation of kangaroos. In Caughley, G., Shepherd, N. and Short, J., eds., Kangaroos: Their Ecology and Management in the Sheep Rangelands of Australia. Cambridge, Cambridge University Press, pp. 100–118.CrossRefGoogle Scholar
Pulliam, H. R. and Enders, F. A. (1971). The feeding ecology of five sympatric finch species. Ecology 52, 557–566.CrossRefGoogle ScholarPubMed
Rahbeck, C. (1993). Captive breeding – a useful tool in the preservation of biodiversity?Biodiversity and Conservation 2, 428–437.Google Scholar
Rahbeck, C. and Graves, G. R. (2001). Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Science USA 98, 4534–4539.CrossRefGoogle Scholar
Ramasamy, P., Ramalingam, K., Hanna, R. E. B. and Halton, D. W. (1985). Microhabitats of gill parasites (Monogenea and Copepoda of teleosts (Scomberoides spp.)). International Journal for Parasitology 15, 385–397.CrossRefGoogle Scholar
Ramensky, L. G. (1926). Die Grundgesetzmässigkeiten im Aufbau der Vegetationsdecke. Botanisches Centralblatt, N.F. 7, 453–455.Google Scholar
Rathcke, B. J. (1976a). Insect plant patterns and relationships in the stem-boring guild. American Midland Naturalist 99, 98–117.CrossRefGoogle Scholar
Rathcke, B. J.(1976b). Competition and coexistence within a guild of herbivorous insects. Ecology 57, 76–87.CrossRefGoogle Scholar
Rensch, B. (1954). Neuere Probleme der Abstammungslehre. Ferdinand Enke Verlag, Stuttgart.
Ricklefs, R. E. (2004). A comprehensive framework for global patterns in biodiversity. Ecology Letters 7, 11–15.CrossRefGoogle Scholar
Ricklefs, R. E. and Miller, G. L. (1999). Ecology. 4th edn. New York, W. H. Freeman and Company.Google Scholar
Ritchie, M. E. and Olff, H. (1999). Spatial scaling laws yield a synthetic theory of biodiversity. Nature 400, 557–562.CrossRefGoogle ScholarPubMed
Robertson, D. R. (1991). Increases in surgeonfish populations after mass mortality of the sea urchin Diadema antillarum in Panama indicate food limitation. Marine Biology 11, 437–444.CrossRefGoogle Scholar
Robertson, D. R.(1995). Competitive ability and the potential for lotteries among territorial reef fishes. Oecologia 103, 180–190.CrossRefGoogle ScholarPubMed
Robertson, D. R.(1996). Interspecific competition controls abundance and habitat use of territorial Caribbean damselfishes. Ecology 77, 885–899.CrossRefGoogle Scholar
Robertson, D. R.(2001). Population maintenance among tropical reef fishes: inferences from small-island endemics. Proceedings of the National Academy of Sciences 98, 5667–5670.CrossRefGoogle ScholarPubMed
Robertson, D. R. and Gaines, S. D. (1986). Interference competition structures habitat use in a local assemblage of coral reef surgeonfishes. Ecology 67, 1372–1383.CrossRefGoogle Scholar
Robertson, G., Short, J. and Wellard, G. (1987). The environment of the Australian sheep rangelands. In Kangaroos: Their Ecology and Management in the Sheep Rangelands of Australia. Cambridge, Cambridge University Press, pp. 14–34.Google Scholar
Rohde, K. (1968). Die Entwicklung von Multicotyle purvisi. Zeitschrift für Parasitenkunde 30, 278–280.Google Scholar
Rohde, K.(1972). The Aspidogastrea, especially Multicotyle purvisi Dawes 1941. Advances in Parasitology 10, 77–151.CrossRefGoogle Scholar
Rohde, K.(1973). Structure and development of Lobatostoma manteri sp.nov. (Trematoda, Aspidogastrea) from the Great Barrier Reef, Australia. Parasitology 66, 63–83.CrossRefGoogle ScholarPubMed
Rohde, K.(1975). Early development and pathogenesis of Lobatostoma manteri Rohde (Trematoda: Aspidogastrea). International Journal for Parasitology 5, 597–607.CrossRefGoogle Scholar
Rohde, K.(1976a). Marine parasitology in Australia. Search 7, 477–482.Google Scholar
Rohde, K.(1976b). Monogenean gill parasites of Scomberomorus commersoni Lacépède and other mackerel on the Australian east coast. Zeitschrift für Parasitenkunde 51, 49–69.CrossRefGoogle Scholar
Rohde, K.(1977a). Species diversity of monogenean gill parasites of fish on the Great Barrier Reef. Proceedings of the Third International Coral Reef Symposium Miami-Florida, pp. 585–591.
Rohde, K.(1977b). A non-competitive mechanism responsible for restricting niches. Zoologischer Anzeiger 199, 164–172.Google Scholar
Rohde, K.(1977c). Habitat partitioning in Monogenea of marine fishes. Heteromicrocotyla australiensis, sp. nov. and Heteromicrocotyloides mirabilis, gen. and sp. nov. (Heteromicrocotylidae) on the gills of Carangoides emburyi (Carangidae) on the Great Barrier Reef, Australia. Zeitschrift für Parasitenkunde 53, 171–182.CrossRefGoogle Scholar
Rohde, K.(1978a). Latitudinal differences in species diversity and their causes. I. A review of the hypotheses explaining the gradients. Biologisches Zentralblatt 97, 393–403.Google Scholar
Rohde, K.(1978b). Latitudinal gradients in species diversity and their causes. II. Marine parasitological evidence for a time hypothesis. Biologisches Zentralblatt 97, 405–418.Google Scholar
Rohde, K.(1978c). Latitudinal differences in host specificity of marine Monogenea and Digenea. Marine Biology 47, 125–134.CrossRefGoogle Scholar
Rohde, K.(1979a). A critical evaluation of intrinsic and extrinsic factors responsible for niche restriction in parasites. American Naturalist 114, 648–671.CrossRefGoogle Scholar
Rohde, K.(1979b). The buccal organ of some Monogenea Popyopisthocotylea. Zoologica Scripta 8, 161–170.CrossRefGoogle Scholar
Rohde, K.(1980a). Warum sind ökologische Nischen begrenzt? Zwischenartlicher Antagonismus oder innerartlicher Zusammenhalt?Naturwissenschaftliche Rundschau 33, 98–102.Google Scholar
Rohde, K.(1980b). Comparative studies on microhabitat utilization by ectoparasites of some marine fishes from the North Sea and Papua New Guinea. Zoologischer Anzeiger 204, 27–63.Google Scholar
Rohde, K.(1980c). Diversity gradients of marine Monogenea in the Atlantic and Pacific Oceans. Experientia 36, 1368–1369.CrossRefGoogle Scholar
Rohde, K.(1980d). Species diversification, with special reference to parasites. Proceedings of the 24th Conference of the Australian Society for Parasitology, Adelaide.
Rohde, K.(1980e). Host specificity indices of parasites and their application. Experientia 36, 1369–1371.CrossRefGoogle Scholar
Rohde, K.(1981a). Niche width of parasites in species-rich and species-poor communities. Experientia, 37, 359–361.CrossRefGoogle Scholar
Rohde, K.(1981b). Population dynamics of two snail species, Planaxis sulcatus and Cerithium moniliferum, and their trematode species at Heron island, Great Barrier Reef. Oecologia 49, 344–352.CrossRefGoogle Scholar
Rohde, K.(1982). Ecology of Marine Parasites. St. Lucia. Brisbane, University of Queensland Press.Google Scholar
Rohde, K.(1984). Ecology of marine parasites. In Kinne, O. and Bulnheim, H. P., eds., Diseases of Marine Organisms, Helgoländer Meeresuntersuchungen 37, 5–33.CrossRef
Rohde, K.(1985). Increased viviparity of marine parasites at high latitudes. Hydrobiologia 127, 197–201.CrossRefGoogle Scholar
Rohde, K.(1986). Differences in species diversity of Monogenea between the Pacific and Atlantic Oceans. Hydrobiologia 137, 21–28.CrossRefGoogle Scholar
Rohde, K.(1989). Simple ecological systems, simple solutions to complex problems? Evolutionary Theory 8, 305–350.Google Scholar
Rohde, K.(1991). Intra- and interspecific interactions in low density populations in resource-rich habitats. Oikos 60, 91–104.CrossRefGoogle Scholar
Rohde, K.(1992). Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514–527.CrossRefGoogle Scholar
Rohde, K.(1993). Ecology of Marine Parasites. 2nd edn. Wallingford, UK, CAB – International (Commonwealth Bureaux of Agriculture).
Rohde, K.(1994a). Niche restriction in parasites: proximate and ultimate causes. Parasitology 109, S69–S84.CrossRefGoogle Scholar
Rohde, K.(1994b). The minor groups of parasitic Platyhelminthes. Advances in Parasitology 33, 145–234.CrossRefGoogle Scholar
Rohde, K.(1997). The larger area in the tropics does not explain latitudinal gradients in species diversity. Oikos 79, 169–172.CrossRefGoogle Scholar
Rohde, K.(1998a). Latitudinal gradients in species diversity. Area matters, but how much? Oikos 82, 184–190.CrossRefGoogle Scholar
Rohde, K.(1998b). Is there a fixed number of niches for endoparasites of fish? International Journal for Parasitology 28, 1861–1865.CrossRefGoogle Scholar
Rohde, K.(1999). Latitudinal gradients in species diversity and Rapoport's rule revisited: a review of recent work, and what can parasites teach us about the causes of the gradients? Ecography, 22, 593–613 (invited Minireview on the occasion of the 50th anniversary of the Nordic Ecological Society Oikos). Also published in Fenchel, T., ed., Ecology 1999 and Tomorrow. University of Lund, Sweden, Oikos Editorial Office, pp. 73–93.Google Scholar
Rohde, K.(2001a). Spatial scaling laws may not apply to most animal species. Oikos 93, 499–504CrossRefGoogle Scholar
Rohde, K.(2001b). The Aspidogastrea: an archaic group of Platyhelminthes. In Littlewood, D. T. J. and Bray, R. A., eds., Interrelationships of the Platyhelminthes. London and New York, Taylor and Francis, pp. 159–167.Google Scholar
Rohde, K.(2001c). Parasitism. In Levin, S. ed., Encyclopedia of Biodiversity Vol. I. New York, Academic Press, pp. 463–484.Google Scholar
Rohde, K.(2002). Ecology and biogeography of marine parasites. Advances in Marine Biology 43, 1–86.CrossRefGoogle ScholarPubMed
Rohde, K.(2005a). Cellular automata and ecology. Oikos 110, 203–207.CrossRefGoogle Scholar
Rohde, K.(2005b). Eine neue Ökologie. Aktuelle Probleme der evolutionären Ökologie. Naturwissen schaftliche Rundschau (in press).
Rohde, K. and Hayward, C. J. (2000). Oceanic barriers as indicated by scombrid fishes and their parasites. International Journal for Parasitology 30, 579–583.CrossRefGoogle ScholarPubMed
Rohde, K. and Heap, M. (1998). Latitudinal differences in species and community richness and in community structure of metazoan endo- and ectoparasites of marine teleost fish. International Journal for Parasitology 28, 461–474.CrossRefGoogle ScholarPubMed
Rohde, K. and Hobbs, R. (1986). Species segregation: Competition or reinforcement of reproductive barriers? In Cremin, M., Dobson, C. and Moorhouse, D. E., eds., Parasite lives. Papers on Parasites, their Hosts and their Association to Honour J. F. A. Sprent. St. Lucia, London, New York, University of Queensland Press, pp. 89–199.Google Scholar
Rohde, K. and Hobbs, R.(1988) Rarity in marine Monogenea. Does an Allee-effect or parasite-induced mortality explain truncated frequency distributions? Biologisches Zentralblatt 107, 327–338.Google Scholar
Rohde, K. and Hobbs, R.(1999). An asymmetric percent similarity index. Oikos 87, 601–602.CrossRefGoogle Scholar
Rohde, K. and Rohde, P. P. (2001). Fuzzy chaos: reduced chaos in the combined dynamics of several independently chaotic populations. American Naturalist 158, 553–556.CrossRefGoogle ScholarPubMed
Rohde, K. and Rohde, P. P.(2005). The ecological niches of parasites. In: Rohde, K. ed., Marine Parasitology. CSIRO Publishing, Melbourne (in press).
Rohde, K., Hayward, C.Heap, M. and Gosper, D. (1994). A tropical assemblage of ectoparasites: gill and head parasites of Lethrinus miniatus (Teleostei, Lethrinidae). International Journal for Parasitology 24, 1031–1053.CrossRefGoogle Scholar
Rohde, K., Hayward, C. and Heap, M. (1995). Aspects of the ecology of metazoan ectoparasites of marine fishes. International Journal for Parasitology 25, 945–970.CrossRefGoogle ScholarPubMed
Rohde, K., Roubal, F. and Hewitt, G. C. (1980). Ectoparasitic Monogenea, Digenea, and Copepoda from the gills of some marine fishes of New Caledonia and New Zealand. New Zealand Journal of Marine and Freshwater Research 14, 1–13.CrossRefGoogle Scholar
Rohde, K., Worthen, W., Heap, M., Hugueny, B. and Guégan, J. F. (1998). Nestedness in assemblages of metazoan ecto- and endoparasites of marine fish. International Journal for Parasitology 28, 543–549.CrossRefGoogle ScholarPubMed
Rosenheim, J. A. and Tabashnik, B. E. (1993). Generation time and evolution. Nature 365, 791–792.CrossRefGoogle Scholar
Rosenzweig, M. L. (1973). Evolution of the predator isocline. Evolution 27, 89–94.CrossRefGoogle ScholarPubMed
Rosenzweig, M. L.(1995). Species Diversity in Space and Time. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Rosenzweig, M. L. and Sandlin, E. A. (1997). Species diversity and latitude: listening to area's signal. Oikos 80, 172–176.CrossRefGoogle Scholar
Rosenzweig, M. L. and Sterner, P. W. (1970). Population ecology of desert rodent communities: body size and seed-husking as bases for heteromyid coexistence. Ecology 51, 217–224.CrossRefGoogle Scholar
Rosenzweig, M. L. and Ziv, Y. (1999). The echo pattern of species diversity: pattern and processes. Oikos 22, 614–628.Google Scholar
Roubal, F. R. (1979). The taxonomy and site specificity of the ectoparasitic metazoans on the black bream, Acanthopagrus australis (Günther), in northern New South Wales. Australian Journal of Zoology Supplement 84.Google Scholar
Roughgarden, J. (1989). The structure and assembly of communities. In Roughgarden, J. S. D., May, R. M. and Levin, S. A., eds., Perspectives in Ecological Theory. Princeton, N.J., Princeton University Press, pp. 203–226.CrossRefGoogle Scholar
Roy, K., Jablonski, D., Valentine, J. W.et al. (1998). Marine latitudinal diversity gradients: tests of causal hypotheses. Proceedings of the National Academy of Sciences USA 95, 3699–3702.CrossRefGoogle ScholarPubMed
Royama, T. (1981) Fundamental concepts and methodology for the analysis of animal population dynamics, with special reference to univoltine species. Ecological Monographs 51, 473–493.CrossRefGoogle Scholar
Sale, P. F. (1977). Maintenance of high diversity in coral reef fish communities. American Naturalist 111, 337–359.CrossRefGoogle Scholar
Sale, P. F.(1991). Reef fish communities: open nonequilibrial systems. In Sale, P. F., ed., The Ecology of Fishes on Coral Reefs. San Diego, Academic Press, pp. 564–598.Google Scholar
Sale, P. F.(2002). The science we need to develop more effective management. In Sale, P. F., ed., Coral Reef Fishes. Dynamics and Diversity in a Complex Ecosystem. Amsterdam, Academic Press, pp. 361–376.Google Scholar
Sale, P. F., ed. (2002). Coral reef fishes. Dynamics and Diversity in a Complex Ecosystem. Amsterdam, Academic Press.Google Scholar
Sale, P. F. and Tolimieri, N. (2000). Density-dependence at some time and place? Oecologia 124, 166–171.CrossRefGoogle ScholarPubMed
Sale, P. F., Doherty, P. J., Eckert, G. J., Douglas, W. A. and Ferrell, D. J. (1984) Large scale spatial and temporal variation in recruitment to fish populations on coral reefs. Oecologia 64, 191–198.CrossRefGoogle ScholarPubMed
Schad, G. A. (1962). Gause's hypothesis in relation to the oxyuroid populations of Testudo graeca. Journal of Parasitology 48, 36.Google Scholar
Schad, G. A.(1963). Niche diversification in a parasitic species flock. Nature 198, 404–406.CrossRefGoogle Scholar
Schoener, T. W. (1983). Field experiments on interspecific competition. American Naturalist 122, 240–285.CrossRefGoogle Scholar
Schoener, T. W.(1986a). Overview: kinds of ecological communities-ecology becomes pluralistic. In Diamond, J. and Case, T. J., eds., Community Ecology. New York, Harper and Row, pp. 467–479.Google Scholar
Schoener, T. W.(1986b). Resource partitioning. In Kikkawa, J. and Anderson, D. J., eds., Community Ecology: Pattern and Process. Melbourne, Blackwell Scientific Publishing, pp. 91–126.Google Scholar
Shepherd, J. G. and Cushing, D. H. (1990). Regulation in fish populations: myth or mirage In Hassell, M. P. and May, R. M., eds., Population, Regulation and Dynamics. Philosophical Transactions of the Royal Society of London, Series B330, 151–164.
Short, J. (1987). Factors affecting food intake of rangeland herbivores. In Caughley, G., Shepherd, N. and Short, J., eds., Kangaroos: Their Ecology and Management in the Sheep Rangelands of Australia. Cambridge, Cambridge University Press, pp. 84–99.CrossRefGoogle Scholar
Shurin, J. B. (2000). Dispersal limitation, invasion resistance, and the structure of pond zooplankton communities. Ecology 81, 3074–3086.CrossRefGoogle Scholar
Shurin, J. B. and Srivastava, D. S. (in press) New perspectives on local and regional diversity: Beyond saturation. In Holyoak, M., Holt, R. and Leibold, M. eds., Metacommunities. Chicago, IL, University of Chicago Press.
Shurin, J. B., Havel, J. E., Leibold, M. A. and Pinel-Alloul, B. (2000). Local and regional zooplankton species richness: a scale-independent test for saturation. Ecology 81, 3062–3072.CrossRefGoogle Scholar
Sibley, C. G. and Ahlquist, , J. E. (1990). Phylogeny and Classification of Birds. A Study in Molecular Evolution. Yale, Yale University Press.Google Scholar
Silman, M. R., Terborgh, J. W. and Kiltie, R. A. (2003). Population regulation of a dominant rain forest tree by a major seed predator. Ecology 84, 431–438.CrossRefGoogle Scholar
Silverton, J. (1980). The dynamics of a grassland ecosystem: botanical equilibrium in the park grassland experiment. Journal of Applied Ecology 17, 491–504.CrossRefGoogle Scholar
Silverton, J. and Charlesworth, D. (2001). Introduction to Plant Population Biology. 4th edn. Oxford, Blackwell Science.Google Scholar
Simberloff, D. S. (1974). Equilibrium theory of island biogeography and ecology. Annual Review of Ecology and Systematics 5, 161–182.CrossRefGoogle Scholar
Simberloff, D. S.(1976). Species turnover and equilibrium island biogeography. Science 194, 572–578.CrossRefGoogle ScholarPubMed
Simberloff, D. S.(1978). Using island biogeographic distributions to determine if colonisation is stochastic. American Naturalist 112, 713–726.CrossRefGoogle Scholar
Simberloff, D. S. and Wilson, E. O. (1970). Experimental zoogeography of islands. A two-year record of colonization. Ecology 51, 934–937.CrossRefGoogle Scholar
Simkova, A., Desdevises, Y., Gelnar, M. and Morand, S. (2000). Co-existence of nine gill ectoparasites (Dactylogyus: Monogenea) parasitising the roach Rutilus rutilus (L.): history and present ecology. International Journal for Parasitology 30, 1077–1088.CrossRefGoogle Scholar
Simkova, A., Gelnar, M. and Morand, S. (2001a). Order and disorder in ectoparasite communities: the case of congeneric gill monogeneans (Dactylogyrus spp.). International Journal for Parasitology 31, 1205–1210.CrossRefGoogle Scholar
Simkova, A., Gelnar, M. and Sasal, P. (2001b). Aggregation of congeneric parasites (Monogenea: Dactylogyrus). Parasitology 123, 599–607.CrossRefGoogle Scholar
Simkova, A., Desdevises, Y., Gelnar, M. and Morand, S. (2001c). Morphometric correlates of host specificity in Dactylogyrus species (Monogenea) parasites of European Cyprinid fish. Parasitology 123, 169–177.CrossRefGoogle Scholar
Simkova, A., Ondrackova, M., Gelnar, M. and Morand, S. (2002). Morphology and coexistence of congeneric ectoparasite species: reinforcement of reproductive isolation? Biological Journal of the Linnaean Society 76, 125–135.Google Scholar
Sinclair, A. R. E. (1979). The eruption of the ruminants. In Sinclair, A. R. E. and Norton-Griffiths, M., eds., Serengeti – the Dynamics of an Ecosystem. Chicago, University of Chicago Press, pp. 82–103.Google Scholar
Sinclair, A. R. E.(1985). Does interspecific competition or predation shape the African ruminant community? Journal of Animal Ecology 54, 899–918.CrossRefGoogle Scholar
Smith, F. D. M., May, R. M., Pellew, T. H., Johnson, T. H. and Walter, K. R. (1993). How much do we know about the current extinction rate? Trends in Ecology and Evolution 8, 375–378.CrossRefGoogle ScholarPubMed
Sousa, W. P. (1990). Spatial scale and the processes structuring a guild of larval trematode parasites. In Esch, G., Bush, A. O. and Aho, J. M., eds., Parasite Communities: Patterns and Processes. London, New York, Chapman and Hall, pp. 41–67.Google Scholar
Sousa, W. P.(1992). Interspecific interactions among larval trematode parasites of freshwater and marine snails. American Zoologist 32, 583–592.CrossRefGoogle Scholar
Sousa, W. P.(1993). Interspecific antagonism and species coexistence in a diverse guild of larval trematode parasites. Ecological Monographs 63, 103–128.CrossRefGoogle Scholar
Srivastava, D. S. (1999). Using local-regional richness plots to test for species saturation: pitfalls and potentials. Journal of Animal Ecology 68, 1–16.CrossRefGoogle Scholar
Srivastava, D. S., Lawton, J. H. and Robinson, G. S. (1997). Spore-feeding: a new, regionally vacant niche for bracken herbivores. Ecological Entomology 22, 475–478.CrossRefGoogle Scholar
Stauffer, D. and Chowdhury, D. (2005). Evolutionary ecology in-silico: evolving food webs, migrating population and speciation. Physica A 352, 202–215.CrossRefGoogle Scholar
Steadman, D. W. (1995). Prehistoric extinctions of Pacific island birds. Biodiversity meets zooarchaeology. Science 267, 1123–1131.CrossRefGoogle ScholarPubMed
Stehli, F. G., Douglas, D. G. and Newell, N. D. (1969). Generation and maintenance of gradients in taxonomic diversity. Science 164, 947–949.CrossRefGoogle ScholarPubMed
Stevens, G. C. (1989). The latitudinal gradients in geographical range: how so many species co-exist in the tropics. American Naturalist 133, 240–256.CrossRefGoogle Scholar
Stiassny, M. L. J. and Raminosoa, N. (1994). The fishes of the inland waters of Madagascar. In Teugels, G. G., Guegan, J. F. and Albert, J. J., eds., Biological Diversity in African Fresh- and Brackish Water Fishes. Tervuren, Belgique, Annales Musee Royal de l'Afrique Centrale, pp. 133–149.Google Scholar
Strong, D. R., Jr. (1981). The possibility of insect communities without competition.: Hispine beetles on Heliconia. In Denno, R. F. and Dingle, H., eds., Insect Life History Patterns: Habitat and Geographic Variation, New York, Springer-Verlag, pp. 183–194.CrossRefGoogle Scholar
Strong, D. R., Jr.(1984). Density-vague ecology and liberal population regulation in insects. In Price, P. W., Slobodchikoff, C. N. and Gaud, W. S., eds., A New Ecology. Novel Approaches to Interactive Systems. New York, Chichester, Brisbane, Toronto, Singapore, John Wiley & Sons, pp. 313–327.Google Scholar
Strong, D. R. Jr., Szyska, L. A. and Simberloff, D. S. (1979). Tests of community-wide character displacement against null hypotheses. Evolution 33, 897–913.Google ScholarPubMed
Strong, D. R. Jr., Lawton, J. H. and Southwood, T. R. E. (1984). Insects on Plants. Community Patterns and Mechanisms. Oxford, Blackwell Scientific.Google Scholar
Sugihara, G., Grenfell, B. and May, R. M. (1990). Distinguishing error from chaos in ecological time. In Hassell, M. P. and May, R. M., eds., Population, Regulation and Dynamics. Philosophical Transactions of the Royal Society of London, Series B330, 235–251.
Surman, C. A. and Wooller, R. D. (2003). Comparative foraging ecology of five sympatric terns at a sub-tropical island in the eastern Indian Ocean. Journal of Zoology (London) 259, 219–230.CrossRefGoogle Scholar
Tarr, H. L. A. (1969). Contrast between fish and warm blooded vetebrates in enzyme systems of intermediary metabolism. In Neuhaus, O. W. and Halves, J. E., eds., Fish in Research. New York, Academic Press, pp. 155–174.Google Scholar
Tauber, C. A. (1978). Response to criticism of Hendrickson. Science 200, 346.Google Scholar
Tauber, C. A. and Tauber, M. J. (1977). Sympatric speciation based on allelic changes in three loci: evidence from natural populations in two habitats. Science 197, 1298–1299.CrossRefGoogle ScholarPubMed
Tauber, C. A. and Tauber, M. J.(1987). Food specificity in predaceous insects: a comparative ecophysiological and genetic study. Evolutionary Ecology 1, 175–186.CrossRefGoogle Scholar
Terborgh, J. (1973). On the notion of favourableness in plant ecology. American Naturalist 107, 481–501.CrossRefGoogle Scholar
Terborgh, J. and Faaborg, J. (1980). Saturation of bird communities in the West Indies. American Naturalist 116, 178–195.CrossRefGoogle Scholar
Terborgh, J. and Weske, J. S. (1969). Colonization of secondary habitats by Peruvian birds. Ecology 50, 765–782.CrossRefGoogle Scholar
Tilman, D. (1982). Resource Competition and Community Structure. Princeton, N.J., Princeton University Press.Google ScholarPubMed
Tilman, D.(1999). Diversity by default. Science 283, 495–496.CrossRefGoogle Scholar
Tilman, D. and Kareiva, P. (1997). Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions. Monographs in Population Biology, no. 30. Princeton, N.J., Princeton University Press.Google Scholar
Tilman, D., Lehman, C. L. and Kareiva, P. (1997). Population dynamics in spatial habitats. In Tilman, D. and Kareiva, P., eds., Spatial Ecology: the Role of Space in Population Dynamics and Interspecific Interactions. Monographs in Population Biology, no. 30. Princeton, N.J., Princeton University Press, pp. 3–20.Google Scholar
Timoféeff-Ressovsky, N. W., Zimmer, K. G. and Delbrück, M. (1935). Über die Natur der Genmutation und der Genstruktur. Nachrichten aus der Biologie der Gesellschaft der Wissenschaften Göttingen 1, 189–245.Google Scholar
Tokeshi, M. (1990). Niche apportionment or random assortment: species abundance patterns. Journal of Animal Ecology 59, 1129–1146.CrossRefGoogle Scholar
Tokeshi, M.(1999). Species Coexistence: Ecological and Evolutionary Perspectives. Oxford, Blackwell Science.Google Scholar
Tonn, W. M., Magnuson, J. J., Rask, M. and Toivonen, J. (1990). Intercontinental comparison of small-lake fish assemblages: the balance between local and regional processes. American Naturalist 136, 345–375.CrossRefGoogle Scholar
Torchin M. and Kuris A. (2005). Introduced parasites and the use of parasites for controlling introduced pest species. In Rohde, K., ed. Marine Parasites. An Introduction, Melbourne, CSIRO Publishing.
Torchin, M. E., Lafferty, K. D., Dobson, A. P., McKenzie, V. J. and Kuris, A. M. (2003). Introduced species and their missing parasites. Nature 421, 628–630.CrossRefGoogle ScholarPubMed
Tsukamoto, K. and Aoyama, J. (1998). Evolution of freshwater eels of the genus Anguilla: a probable scenario. Environmental Biology of Fishes 52, 139–148.CrossRefGoogle Scholar
Tsukamoto, K.,Aoyama, J. and Miller, M. J. (2002) Migration, speciation, and the evolution of diadromy in anguillid eels. Canadian Journal of Fisheries and Aquatic Science 59, 1989–1998.CrossRefGoogle Scholar
Turchin, P. (1995). Population regulation: old arguments and a new synthesis. In Cappuccino, N. and Price, P. W., eds., Population Dynamics: New Approaches and Synthesis. San Diego, Academic Press, pp. 19–41.Google Scholar
Tyler, H., Brown, K. S. and Wilson, K. (1994). Swallowtail Butterflies of the Americas. Gainsville, Scientific Publishing.Google Scholar
Underwood, T. (1986). The analysis of competition by field experiments. In Kikkawa, J. and Anderson, D. J., eds., Community Ecology: Pattern and Process. Melbourne, Blackwell Scientific Publishing, pp. 240–268.Google Scholar
Valdovinos, C., Navarete, S. A. and Marquet, P. A. (2003). Mollusc species diversity in the Southeastern Pacific: why are there more species towards the pole? Ecography 26, 129–144.CrossRefGoogle Scholar
Nouhuys, S. and Hanski, I. (2002). Colonization rates and distances of a host butterfly and two specific parasitoids in a fragmented landscape. Journal of Animal Ecology 71, 639–650.CrossRefGoogle Scholar
Valen, L. (1973). A new evolutionary law. Evolutionary Theory 1, 1–30.Google Scholar
Varley, G. C. (1947). The natural control of population balance in the knapweed gall-fly (Urophora jaceana). Journal of Animal Ecology 16, 139–187.CrossRefGoogle Scholar
Via, S. (2001). Sympatric speciation in animals: the ugly duckling grows up. Trends in Ecology and Evolution 16, 381–390.CrossRefGoogle ScholarPubMed
Volkov, I., Banavar, J. R., Hubbell, S. P. and Maritan, A. (2003). Neutral theory and relative species abundance in ecology. Nature 424, 1035–1037.CrossRefGoogle ScholarPubMed
Bertalanffy, L. (1952). Problems of Life. London, Watts and Co.Google Scholar
Von Bertalanffy, L.(1973). General System Theory. Harmondsworth, Penguin University Books.
Waide, R. B., Willig, M. R., Steiner, C. F., Mittelbach, G. G., Gough, L., Dodson, S. I., Juday, G. P. and Parmenter, R. (1999). The relationship between productivity and species richness. Annual Review of Ecology and Systematics 30, 257–300.CrossRefGoogle Scholar
Walker, J. C. (1979). Austrobilharzia terrigalensis: a schistosome dominant in interspecific interactions in a molluscan host. International Journal for Parasitology 9, 137–140.CrossRefGoogle Scholar
Walker, T. D. and Valentine, J. W. (1984). Equilibrium models of evolutionary diversity and the number of empty niches. American Naturalist 124, 887–899.CrossRefGoogle Scholar
Walter, G. H. (1995). Species concepts and the nature of ecological generalizations about diversity. In Lambert, D. M. and Spencer, H. G., eds., Speciation and the Recognition Concept. Baltimore and London, John Hopkins University Press, pp. 191–224.Google Scholar
Walter, G. H. and Hengeveld, R. (2000). The structure of the two ecological paradigms. Acta Biotheoretica 48, 15–46.CrossRefGoogle Scholar
Walter, G. H. and Patterson, H. E. H. (1994). The implications of palaeontological evidence for theories of ecological communities and species richness. Australian Journal of Ecology 19, 241–250.CrossRefGoogle Scholar
Walter, G. H. and Patterson, H. E. H.(1995). Levels of understanding in ecology: interspecific competition and community ecology. Australian Journal of Ecology 20, 463–466.CrossRefGoogle Scholar
Watkinson, A. R. (1997). Plant population dynamics. In Crawley, M. J., ed., Plant Ecology, 2nd edn. Oxford, Blackwell Science, pp. 359–400.Google Scholar
Webster, M. S. (2003). Temporal density dependence and population regulation in a marine fish. Ecology 84, 623–628.CrossRefGoogle Scholar
Werner, R. R. and Hughes, T. P. (1988). The population dynamics of reef fishes. Proceedings of the 6th International Coral Reef Symposium I, 144–155.Google Scholar
Wetzel, R. G. (1975). Limnology. Philadelphia, PA, Saunders.Google Scholar
White, T. C. R. (1993). The Inadequate Environment: Nitrogen and the Abundance of Animals. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Whittaker, R. H. (1967). Gradient analysis of vegetation. Biological Review 42, 207–264.CrossRefGoogle ScholarPubMed
Whittaker, R. H.(1972). Evolution and measurement of species diversity. Taxon 21, 213–251.CrossRefGoogle Scholar
Whittaker, R. H.(1975). Communities and Ecosystems. New York, Macmillan.Google Scholar
Wiens, J. A. (1974). Habitat heterogeneity and avian community structure in North American grasslands. American Midland Naturalist 91, 195–213.CrossRefGoogle Scholar
Wiens, J. A.(1984). Resource systems, populations, and communities. In Price, P. W., Slobodchikoff, C. N. and Gaud, W. S., eds., A New Ecology. Novel Approaches to Interactive Systems. New York, Chichester, Brisbane, Toronto, Singapore, John Wiley & Sons, pp. 397–436.Google Scholar
Willig, M. R. (2001). Latitude, common trends within. In Levin, S., ed., Encyclopedia of Biodiversity, vol.3. New York, Academic Press, pp. 701–714.Google Scholar
Willig, M. R., Kaufman, D. M. and Stevens, R. D. (2003). Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution and Systematics 34, 273–309.CrossRefGoogle Scholar
Wilson, D. S. (1975). The adequacy of body size as niche difference. American Naturalist 109, 769–784.CrossRefGoogle Scholar
Wilson, D. S.(1969). The species equilibrium. In Woodwell, G. M. and Smith, H. H., eds., Diversity and Stability in Ecological Systems. Brookhaven Symposia in Biology, no.22. Upton, New York, Brookhaven National Laboratory, pp. 38–47.Google Scholar
Wilson, E. O. and Simberloff, D. S. (1969). Experimental zoogeography of islands. Defaunation and monitoring techniques. Ecology 50, 267–277.CrossRefGoogle Scholar
Wolfram, S. (1986). Theory and Applications of Cellular Automata: Advanced Series on Complex Systems. Singapore, World Scientific Publishing.Google Scholar
Wolfram, S.(2002). A New Kind of Science. Champaign, Il., Wolfram Media Inc.
Worthen, W. B. and Rohde, K. (1996). Nested subset analysis of colonisation-dominated communities: metazoan ectoparasites of marine fish. Oikos 75, 471–478.CrossRefGoogle Scholar
Wright, S. D., Gray, R. D. and Gardner, R. C. (2003). Energy and the rate of evolution: inferences from plant rDNA substitution rates in the Western Pacific. Evolution 57, 2893–2898.CrossRefGoogle ScholarPubMed
Wright, S. J. (2002). Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130, 1–14.CrossRefGoogle ScholarPubMed
Wynne-Edwards, V. C. (1962). Animal Dispersion in Relation to Social Behaviour. Edinburgh, Oliver and Boyd.Google Scholar
Zhang, H. and Wu, J. (2002). A statistical thermodynamic model of the organizational order of vegetation. Ecological Modelling 153, 69–80.CrossRefGoogle Scholar
Zwölfer, H. (1974a). Innerartliche Kommunikationssysteme bei Bohrfliegen. Biologie in unserer Zeit 6, 147–153.Google Scholar
Zwölfer, H.(1974b). Das Treffpunkt-Prinzip als Kommunikationsstrategie und Isolationsmechanismus bei Bohrfliegen (Diptera: Trypetidae). Entomologia Germanica 1, 11–20.Google Scholar
Zwölfer, H. and Bush, G. L. (1984). Sympatrische und parapatrische Artbildung. Zeitschrift für zoologische Systematik und Evolutionsforschung 22, 211–233.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Klaus Rohde, University of New England, Australia
  • Book: Nonequilibrium Ecology
  • Online publication: 11 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511542152.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Klaus Rohde, University of New England, Australia
  • Book: Nonequilibrium Ecology
  • Online publication: 11 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511542152.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Klaus Rohde, University of New England, Australia
  • Book: Nonequilibrium Ecology
  • Online publication: 11 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511542152.013
Available formats
×