Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-16T17:07:59.206Z Has data issue: false hasContentIssue false

6 - Bi-orthogonal product (c-product)

Published online by Cambridge University Press:  03 May 2011

Nimrod Moiseyev
Affiliation:
Technion - Israel Institute of Technology, Haifa
Get access

Summary

This chapter is divided into several sections which together represent one of the fundamental concepts in the non-Hermitian formalism of quantum mechanics (NH QM). First we discuss the need to replace the inner product used in the standard (Hermitian) formalism of quantum mechanics by another construct which was termed the c-product by Moiseyev, Certain and Weinhold in 1978. Unlike the standard situation where the eigenfunctions (eigenvectors) of an Hermitian operator (matrix) form a complete set which can be used to expand a wavepacket which describes the system at a given time, in NH QM it might happen that the eigenfunctions make up an incomplete set since several (usually two) eigenfunctions (eigenvectors) coalesce to generate a self-orthogonal state. We need completeness and closure relations in order to develop, for example, perturbation theory and scattering theories for non-Hermitian Hamiltonians and in order to be able to solve the Schrödinger equation by numerical methods. Therefore, the second section of this chapter is devoted to the completeness of the spectrum in NH QM. Other aspects of the non-Hermitian formalism which stem from this issue deal with the advantages of using a non-Hermitian formalism for a time-dependent description of a decaying system as well as its application to time-periodic systems. Accordingly, the discussion in one of the sections will encompass the propagation of wavepackets in non-Hermitian quantum mechanics whereas another will elaborate on the benefits of the formalism for the description of the interaction of matter with intense laser radiation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×