Skip to main content Accessibility help
×
Hostname: page-component-68945f75b7-49v7h Total loading time: 0 Render date: 2024-09-02T11:18:43.360Z Has data issue: false hasContentIssue false

19 - What worked and what didn't

from Part V - Testbeds

Published online by Cambridge University Press:  10 May 2010

Martin Maier
Affiliation:
Université du Québec, Montréal
Get access

Summary

A variety of optical networking technologies and architectures have been developed and examined over the past decades. Up to date, however, only a few of them led to commercial adoption and revenue generation. According to Ramaswami (2006), Erbium doped fiber amplifiers (EDFAs), reconfigurable optical add-drop multiplexers (ROADMs), wavelength cross-connects (WXCs), and tunable lasers are good examples of devices successfully deployed in today's optical networks. In contrast, other technologies and techniques such as wavelength conversion, optical code division multiple access (OCDMA), optical packet switching (OPS), and optical burst switching (OBS) face significant challenges toward widespread deployment.

Crucial to the commercial success of any proposed networking technology and architecture is not only its performance evaluation by means of analysis or simulation but also a thorough feasibility study of its practical aspects. Toward this end, proof-of-concept demonstrators, testbeds, and field trials play a key role.

In this part, we provide an up-to-date survey of testbed activities on the latest switching techniques proposed for next-generation optical networks. A number of different optical switching techniques have been studied over the last few years. In our survey, we outline current testbed activities of the following major optical switching techniques: generalized multiprotocol label switching (GMPLS), waveband switching (WBS), photonic slot routing (PSR), optical flowswitching (OFS), optical burst switching (OBS), and optical packet switching (OPS), which were explained at length in previous chapters. We note that our survey is targeted to networks rather than stand-alone components and devices. Furthermore, we note that regional overviews of optical networking testbeds in Europe and China were recently reported in Fabianek (2006) and Lin and Wu (2006), respectively.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • What worked and what didn't
  • Martin Maier, Université du Québec, Montréal
  • Book: Optical Switching Networks
  • Online publication: 10 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619731.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • What worked and what didn't
  • Martin Maier, Université du Québec, Montréal
  • Book: Optical Switching Networks
  • Online publication: 10 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619731.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • What worked and what didn't
  • Martin Maier, Université du Québec, Montréal
  • Book: Optical Switching Networks
  • Online publication: 10 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619731.023
Available formats
×