Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-27T20:32:05.249Z Has data issue: false hasContentIssue false

6 - NLP models: volatility estimation

Published online by Cambridge University Press:  06 July 2010

Gerard Cornuejols
Affiliation:
Carnegie Mellon University, Pennsylvania
Reha Tütüncü
Affiliation:
Quantitative Resources Group, Goldman Sachs Asset Management, New York
Get access

Summary

Volatility is a term used to describe how much the security prices, market indices, interest rates, etc., move up and down around their mean. It is measured by the standard deviation of the random variable that represents the financial quantity we are interested in. Most investors prefer low volatility to high volatility and therefore expect to be rewarded with higher long-term returns for holding higher volatility securities.

Many financial computations require volatility estimates. Mean-variance optimization trades off the expected return and volatility of a portfolio of securities. The celebrated option valuation formulas of Black, Scholes, and Merton (BSM) involve the volatility of the underlying security. Risk management revolves around the volatility of the current positions. Therefore, accurate estimation of the volatilities of security returns, interest rates, exchange rates, and other financial quantities is crucial to many quantitative techniques in financial analysis and management.

Most volatility estimation techniques can be classified as either a historical or an implied method. One either uses historical time series to infer patterns and estimates the volatility using a statistical technique, or considers the known prices of related securities such as options that may reveal the market sentiment on the volatility of the security in question. GARCH models exemplify the first approach while the implied volatilities calculated from the BSM formulas are the best-known examples of the second approach. Both types of techniques can benefit from the use of optimization formulations to obtain more accurate volatility estimates with desirable characteristics such as smoothness.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×