Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T00:05:50.520Z Has data issue: false hasContentIssue false

27 - Optogenetic Dissection of a Top-down Prefrontal to Hippocampus Memory Circuit

from Part V - Optogenetics in Vision Restoration and Memory

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 393 - 404
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achard, S., Salvador, R., Whitcher, B. et al. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci., 26, 6372.CrossRefGoogle ScholarPubMed
Andrews-Zwilling, Y., Gillespie, A.K., Kravitz, A.V. et al. (2012). Hilar GABAergic interneuron activity controls spatial learning, memory retrieval. PLoS ONE, 7, e40555.CrossRefGoogle ScholarPubMed
Bonifazi, P., Goldin, M., Picardo, M.A. et al. (2009). GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science, 326, 1419–24.CrossRefGoogle ScholarPubMed
Bouton, M.E. and Bolles, R.C. (1980). Conditioned fear assessed by freezing and by the suppression of three different baselines. Anim. Learn. Behav. 8, 429434.CrossRefGoogle Scholar
Brecht, M., Schneider, M. and Sakmann, B. (2004). Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature, 427, 704710.CrossRefGoogle ScholarPubMed
Buetfering, C., Allen, K. and Monyer, H. (2014). Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex. Nat. Neurosci., 17, 710718.CrossRefGoogle ScholarPubMed
Bullmore, E. and Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci., 10, 186198.CrossRefGoogle ScholarPubMed
Buzsáki, G., Geisler, C., Henze, D.A. et al. (2004). Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci., 27, 186193.CrossRefGoogle ScholarPubMed
Chen, T.W., Wardill, T.J., Sun, Y. et al. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499, 295300.CrossRefGoogle ScholarPubMed
Choi, G.B., Stettler, D.D., Kallman, B.R. et al. (2011). Driving opposing behaviors with ensembles of piriform neurons. Cell, 146, 10041015.CrossRefGoogle ScholarPubMed
Deisseroth, K. (2015). Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci., 18, 20132025.CrossRefGoogle ScholarPubMed
Deisseroth, K. and Schnitzer, M.J. (2013). Engineering approaches to illuminating brain structure and dynamics. Neuron, 80, 568577.CrossRefGoogle ScholarPubMed
Dombeck, D.A., Harvey, C.D., Tian, L. et al. (2010). Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci., 13, 14331440.CrossRefGoogle ScholarPubMed
Frankland, P.W. and Bontempi, B. (2005). The organization of recent and remote memories. Nat. Rev. Neurosci., 6, 119130.CrossRefGoogle ScholarPubMed
Garner, A.R., Rowland, D.C., Hwang, S.Y. et al. (2012). Generation of a synthetic memory trace. Science, 335, 15131516.CrossRefGoogle ScholarPubMed
Gdalyahu, A., Tring, E., Polack, P. et al. (2012). Associative fear learning enhances sparse network coding in primary sensory cortex. Neuron, 75, 121132.CrossRefGoogle ScholarPubMed
Gore, F., Schwartz, E.C., Brangers, B.C. et al. (2015). Neural representations of unconditioned stimuli in basolateral amygdala mediate innate and learned responses. Cell, 162, 134145.CrossRefGoogle ScholarPubMed
Goshen, I. (2014). The optogenetic revolution in memory research. Trends Neurosci., 37, 511522.CrossRefGoogle ScholarPubMed
Goshen, I., Brodsky, M., Prakash, R. et al. (2011). Dynamics of retrieval strategies for remote memories. Cell, 147, 678689.CrossRefGoogle ScholarPubMed
Hagmann, P., Cammoun, L., Gigandet, X., et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol., 6, e159.CrossRefGoogle ScholarPubMed
Han, J.H., Kushner, S.A., Yiu, A.P. et al. (2007). Neuronal competition and selection during memory formation. Science, 316, 457460.CrossRefGoogle ScholarPubMed
Han, J.H., Kushner, S.A., Yiu, A.P. et al. (2009). Selective erasure of a fear memory. Science, 323, 14921496.CrossRefGoogle ScholarPubMed
He, Y., Chen, Z.J. and Evans, A. C. (2007). Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex, 17, 24072419.CrossRefGoogle ScholarPubMed
Hermundstad, A.M., Brown, K.S., Bassett, D.S. et al. (2011). Learning, memory, and the role of neural network architecture. PLoS Comput. Biol., 7, e1002063.CrossRefGoogle ScholarPubMed
Houweling, A.R. and Brecht, M. (2008). Behavioural report of single neuron stimulation in somatosensory cortex. Nature, 451, 6568.CrossRefGoogle ScholarPubMed
Ito, H.T., Zhang, S.J., Witter, M.P. et al. (2015). A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation. Nature, 522, 5055.CrossRefGoogle ScholarPubMed
Kandel, E.R., Dudai, Y. and Mayford, M.R. (2014). The molecular and systems biology of memory. Cell, 157, 163186.CrossRefGoogle ScholarPubMed
Kheirbek, M.A., Drew, L.J., Burghardt, N.S. et al. (2013). Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron, 77, 955968.CrossRefGoogle ScholarPubMed
Komiyama, T., Sato, T.R., O’Connor, D.H. et al. (2010). Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature, 464, 11821186.CrossRefGoogle ScholarPubMed
Li, C.Y., Poo, M-M. and Dan, Y. (2009). Burst spiking of a single cortical neuron modifies global brain state. Science, 324, 643646.CrossRefGoogle ScholarPubMed
Li, X., Ouyang, G., Usami, A. et al. (2010). Scale-free topology of the CA3 hippocampal network: a novel method to analyze functional neuronal assemblies. Biophys. J., 98, 17331741.CrossRefGoogle ScholarPubMed
Lin, J.Y., Knutsen, P.M., Muller, A. et al. (2013). ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci., 16, 14991508.CrossRefGoogle ScholarPubMed
Liu, X., Ramirez, S., Pang, P.T. et al. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 484, 381385.CrossRefGoogle ScholarPubMed
Lovett-Barron, M., Kaifosh, P., Kheirbek, M.A. et al. (2014). Dendritic inhibition in the hippocampus supports fear learning. Science, 343, 857863.CrossRefGoogle ScholarPubMed
Mahoney, W.J. and Ayres, J.J.B. (1976). One-trial simultaneous and backward fear conditioning as reflected in conditioned suppression of licking in rats. Anim. Learn. Behav. 4, 357362.CrossRefGoogle Scholar
Meunier, D., Lambiotte, R. and Bullmore, E.T. (2010). Modular and hierarchically modular organization of brain networks. Front. Neurosci., 4, 200.CrossRefGoogle ScholarPubMed
Olshausen, B.A. and Field, D.J. (2004). Sparse coding of sensory inputs. Curr. Opin. Neurobiol., 14, 481487.CrossRefGoogle ScholarPubMed
Perin, R., Berger, T.K. and Markram, H. (2011). A synaptic organizing principle for cortical neuronal groups. PNAS, 108, 54195424.CrossRefGoogle ScholarPubMed
Ramirez, S., Liu, X., Lin, P.A. et al. (2013). Creating a false memory in the hippocampus. Science, 341, 387391.CrossRefGoogle ScholarPubMed
Rajasethupathy, P., Sankaran, S., Marshel, J. et al. (2015). Projections from neocortex mediate top-down control of memory retrieval. Nature, 526, 653659.CrossRefGoogle ScholarPubMed
Redondo, R.L., Kim, J., Arons, A.L. et al. (2014). Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature, 513, 426430.CrossRefGoogle ScholarPubMed
Reijmers, L.G., Perkins, B.L., Matsuo, N. et al. (2007). Localization of a stable neural correlate of associative memory. Science, 317, 12301233.CrossRefGoogle ScholarPubMed
Root, C.M., Denny, C.A., Hen, R. et al. (2014). The participation of cortical amygdala in innate, odour-driven behaviour. Nature, 515, 269273.CrossRefGoogle ScholarPubMed
Song, S., Sjöström, P.J., Reigl, M. et al. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol., 3, e68.CrossRefGoogle ScholarPubMed
Vinje, W.E. and Gallant, J.L. (2000). Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 287, 12731276.CrossRefGoogle ScholarPubMed
Wickersham, I.R., Finke, S., Conzelmann, K.K. et al. (2007). Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat. Methods, 4, 4749.CrossRefGoogle ScholarPubMed
Xu, W. and Südhof, T.C. (2013). A neural circuit for memory specificity and generalization. Science, 339, 12901295.CrossRefGoogle ScholarPubMed
Yassin, L., Benedetti, B.L., Jouhanneau, J.S. et al. (2010). An embedded subnetwork of highly active neurons in the neocortex. Neuron, 68, 10431050.CrossRefGoogle ScholarPubMed
Yiu, A.P., Mercaldo, V., Yan, C. et al. (2014). Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron, 83, 722735.CrossRefGoogle ScholarPubMed
Yizhar, O., Fenno, L.E., Prigge, M. et al. (2011). Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature, 477, 171178.CrossRefGoogle ScholarPubMed
Yu, S., Huang, D., Singer, W. et al. (2008). A small world of neuronal synchrony. Cereb. Cortex, 18, 28912901.CrossRefGoogle ScholarPubMed
Zhang, S.-J., Ye, J., Miao, C. et al. (2013). Optogenetic dissection of entorhinal–hippocampal functional connectivity. Science, 340, 1232627.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×