Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T16:41:31.202Z Has data issue: false hasContentIssue false

8 - Energy conservation in the 3D Euler equations on T2 × R+

Published online by Cambridge University Press:  15 August 2019

Charles L. Fefferman
Affiliation:
Princeton University, New Jersey
James C. Robinson
Affiliation:
University of Warwick
José L. Rodrigo
Affiliation:
University of Warwick
Get access

Summary

The aim of this paper is to prove energy conservation for the incompressible Euler equations in a domain with boundary. We work in the domain $$\TT^2\times\R_+$$, where the boundary is both flat and has finite measure; in this geometry we do not require any estimates on the pressure, unlike the proof in general bounded domains due to Bardos & Titi (2018). However, first we study the equations on domains without boundary (the whole space $$\R^3$$, the torus $$\mathbb{T}^3$$, and the hybrid space $$\TT^2\times\R$$). We make use of somearguments due to Duchon & Robert (2000) to prove energy conservation under the assumption that $$u\in L^3(0,T;L^3(\R^3))$$ and $${|y|\to 0}\frac{1}{|y|}\int^T_0\int_{\R^3} |u(x+y)-u(x)|^3\,\d x\,\d t=0$$ or $$\int_0^T\int_{\R^3}\int_{\R^3}\frac{|u(x)-u(y)|^3}{|x-y|^{4+\delta}}\,\d x\,\d y\,\d t<\infty,\qquad\delta>0$$, the second of which is equivalent to $$u\in L^3(0,T;W^{\alpha,3}(\R^3))$$, $$\alpha>1/3$$.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×