Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-08-05T09:18:17.589Z Has data issue: false hasContentIssue false

23 - Axion searches

Published online by Cambridge University Press:  04 August 2010

Gianfranco Bertone
Affiliation:
Institut d'Astrophysique de Paris
Get access

Summary

At the time the Peccei–Quinn (PQ) solution [1555] to the strong CP problem [1553] was proposed it seemed perfectly reasonable to identify the PQ symmetry breaking scale with the electroweak scale. As the mass and the couplings scale inversely with the symmetry breaking scale, the expectation was that the mass of the axion would be hundreds of keV with couplings strong enough to be seen in accelerator and reactor experiments. The experimental situation quickly began to disfavour a massive axion as null results began to be amassed from a variety of particle and nuclear physics experiments. Tacitly acknowledging that there was no strong theoretical guidance for such a choice, new models soon appeared with arbitrarily large fa, resulting in couplings so extraordinarily weak as to render the axion effectively invisible. Frustrating as this might have been to experimentalists, an unintended consequence of such a small coupling would be the prospect for the axion to be the dark matter pervading the Universe (since) [1600].

Still, it was unsatisfying that axion dark matter could, in principle, completely escape detection. Fortunately, in 1983 Pierre Sikivie made a proposal that could make ‘invisible’ axions ‘visible’ again [1277; 1754; 1755]. To overcome the dreadfully small couplings and excessively long decay natural lifetimes, a technique was borrowed from the gravitational wave community. Specifically, Sikivie proposed that axion decay into two photons could be stimulated with a high-Q oscillator.

Type
Chapter
Information
Particle Dark Matter
Observations, Models and Searches
, pp. 467 - 488
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×