Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-25T19:55:58.988Z Has data issue: false hasContentIssue false

8 - Supersymmetric dark matter candidates

Published online by Cambridge University Press:  04 August 2010

Gianfranco Bertone
Affiliation:
Institut d'Astrophysique de Paris
Get access

Summary

Motivations

Supersymmetry is one of the best-motivated proposals for physics beyond the Standard Model. There are many idealistic motivations for believing in supersymmetry, such as its intrinsic elegance, its ability to link matter particles and force carriers, its ability to link gravity to the other fundamental interactions, and its essential role in string theory. However, none of these aesthetic motivations gives any hint as to the energy scale at which supersymmetry might appear. The following are the principal utilitarian reasons to think that supersymmetry might appear at some energy accessible to forthcoming experiments.

The first and primary of these was the observation that supersymmetry could help stabilize the mass scale of electroweak symmetry breaking, by cancelling the quadratic divergences in the radiative corrections to the mass-squared of the Higgs boson [1374; 1829; 1940], and by extension to the masses of other Standard Model particles. This motivation suggests that sparticles weigh less than about 1 TeV, but the exact mass scale depends on the amount of fine-tuning that one is prepared to tolerate.

Historically, the second motivation for low-scale supersymmetry, and the one that interests us most here, was the observation that the lightest supersymmetric particle (LSP) in models with conserved R-parity, being heavy and naturally neutral and stable, would be an excellent candidate for dark matter [760; 973]. This motivation requires that the lightest supersymmetric particle should weigh less than about 1 TeV, if it had once been in thermal equilibrium in the early Universe.

Type
Chapter
Information
Particle Dark Matter
Observations, Models and Searches
, pp. 142 - 163
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×