Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-15T15:58:18.405Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

Part V - Evolution of two membranes of chloroplast endoplasmic reticulum and the Chlorarachniophyta

Robert Edward Lee
Affiliation:
Colorado State University
Get access

Summary

Algae with two membranes of chloroplast endoplasmic reticulum (chloroplast E.R.) have the inner membrane of chloroplast E.R. surrounding the chloroplast envelope. The outer membrane of chloroplast E.R. is continuous with the outer membrane of the nuclear envelope and has ribosomes on the outer surface (Fig. V.1).

The algae with two membranes of chloroplast E.R. evolved by a secondary endosymbiosis (Fig. V.1) (Lee, 1977) when a phagocytic protozoan took up a eukaryotic photosynthetic alga into a food vesicle. Instead of being phagocytosed by the protozoan, the photosynthetic alga became established as an endosymbiont within the food vesicle of the protozoan. The endosymbiotic photosynthetic alga benefited from the acidic environment in the food vesicle that kept much of the inorganic carbon in the form of carbon dioxide, the form needed by ribulose bisphosphate/carboxylase for carbon fixation (see Part IV for further explanation). The host benefited by receiving some of the photosynthate from the endosymbiotic alga. The food vesicle membrane eventually fused with the endoplasmic reticulum of the host protozoan, resulting in ribosomes on the outer surface of this membrane, which became the outer membrane of the chloroplast E.R. Through evolution, ATP production and other functions of the endosymbiont's mitochondrion were taken over by the mitochondria of the protozoan host, and the mitochondria of the endosymbiont were lost. The host nucleus also took over some of the genetic control of the endosymbiont, with a reduction in the size and function of the nucleus of the endosymbiont.

Type
Chapter
Information
Phycology , pp. 315 - 320
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×