Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-28T20:24:23.340Z Has data issue: false hasContentIssue false

8 - Phylogenetic networks from clusters

from Part III - Algorithms and applications

Published online by Cambridge University Press:  05 August 2011

Daniel H. Huson
Affiliation:
Eberhard-Karls-Universität Tübingen, Germany
Regula Rupp
Affiliation:
Eberhard-Karls-Universität Tübingen, Germany
Celine Scornavacca
Affiliation:
Eberhard-Karls-Universität Tübingen, Germany
Get access

Summary

In this chapter, we present some methods for computing phylogenetic networks from clusters. Clusters, as opposed to splits, are inherently rooted and this explains why all methods presented in this chapter produce rooted phylogenetic networks. We first briefly mention the cluster-popping algorithm for computing a cluster network, and then present a divide-and-conquer approach for computing rooted phylogenetic networks. Based on this, we discuss how to compute minimum galled trees, galled networks and level-k networks from clusters.

Cluster networks

In Chapter 6, we introduced the concept of a cluster network, which is a rooted phylogenetic network that represents a set of clusters in the hardwired sense. In such a network, every tree edge represents exactly one cluster, which is defined as the set of taxa that label nodes below that edge. Given a set of clusters C on X, the cluster network N that represents C can be efficiently computed using the cluster-popping algorithm presented in Section 6.4. This algorithm is implemented in the Dendroscope program and there it can be used to compute a cluster network from the set of clusters associated with a collection of rooted phylogenetic trees [121].

Application

A typical application of a cluster network is that one is given multiple rooted gene trees for a set of species and one would like to produce a network to illustrate the parts of the phylogeny upon which the trees agree and which parts are resolved in different ways.

Type
Chapter
Information
Phylogenetic Networks
Concepts, Algorithms and Applications
, pp. 193 - 215
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×