Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-28T18:19:32.383Z Has data issue: false hasContentIssue false

11 - Phylogenetic networks from trees

from Part III - Algorithms and applications

Published online by Cambridge University Press:  05 August 2011

Daniel H. Huson
Affiliation:
Eberhard-Karls-Universität Tübingen, Germany
Regula Rupp
Affiliation:
Eberhard-Karls-Universität Tübingen, Germany
Celine Scornavacca
Affiliation:
Eberhard-Karls-Universität Tübingen, Germany
Get access

Summary

In this chapter, we look at a number of methods that take as input one or more phylogenetic trees and compute as output a phylogenetic network. We first discuss methods for computing consensus trees and consensus split networks from unrooted phylogenetic trees, and then briefly touch on doing the same for rooted phylogenetic trees. We then present an algorithm for computing a minimum hybridization network for two trees. The two last topics in this section both address the issue of gene duplications. First we discuss how to compute a phylogenetic network for a given multi-labeled phylogenetic tree. Then we discuss an approach used for computing an optimal duplication-loss-transfer scenario that reconciles a gene tree with a species tree.

Consensus split networks

Assume that we are given a collection T = (T1, …, Tk) of unrooted phylogenetic trees on X. They might be different phylogenetic trees inferred for different genes, a collection of trees obtained for a single gene using a number of different tree inference methods or a list of trees produced via bootstrapping or a sampling approach, for example.

Such a collection of unrooted phylogenetic trees T is often represented by a single consensus tree, as discussed in Section 3.17. Recall that two standard approaches to computing a consensus tree both start by determining the splits associated with each tree in T, and then either consider the set Sstrict(T) of all splits that occur in every tree, or consider the set Smajority(T) of all splits that occur in more than half of the trees.

Type
Chapter
Information
Phylogenetic Networks
Concepts, Algorithms and Applications
, pp. 265 - 299
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×