Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-28T14:27:25.246Z Has data issue: false hasContentIssue false

2 - Atomic structure of surfaces

Published online by Cambridge University Press:  24 September 2009

Claudine Noguera
Affiliation:
Université de Paris XI
Get access

Summary

When a crystal is cut along some orientation, the atoms located in the few outer layers experience non-zero forces which are induced by the breaking of oxygen–cation bonds. Generally, they do not remain at the positions fixed by the three-dimensional lattice. Point or extended defects may result, as well as lattice distortions. This chapter analyses the structural features of oxide surfaces, which is also a useful step, before starting the discussion of the surface electronic properties. Yet, conceptually, this presentation is not fully satisfactory, because the structural and electronic degrees of freedom are coupled and both determine the ground state configuration. Despite a rich literature, the structural properties of oxide surfaces are not fully elucidated. It is often difficult to prepare stoichiometric and defect-free surfaces, and the characterization is hindered by charging effects and by an uncertainty about the actual crystal termination.

Preliminary remarks

We will make some preliminary remarks concerning the designation of the surfaces, their polar or non-polar character and their structural distortions – relaxation, rumpling and reconstruction.

Notations

A plane in a crystal, is identified by three integers (h, k, l), called the Miller indices, which are in the same ratio as (1/x, 1/y, 1/z), the inverses of the coordinates of the intersections of this plane with the crystallographic axes (van Meerssche and Feneau-Dupont, 1977). Notations with four indexes (h, k, –(h + k), l) are used in hexagonal structures, such as α-quartz, corundum α-alumina, or the wurtzite ZnO structure.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×