Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-16T12:00:04.399Z Has data issue: false hasContentIssue false

7 - Large-wavelength waves; integral equations

Published online by Cambridge University Press:  05 November 2013

Thomas J. Hanratty
Affiliation:
University of Illinois, Urbana-Champaign
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, J. 1984 Turbulent flow over small amplitude solid waves. Ph.D. thesis, Univerity of Illinois.
Abrams, J. & Hanratty, T. J. 1984 Relaxation effects observed for turbulent flow over a wavy surface. J. Fluid Mech. 151, 443–455.CrossRefGoogle Scholar
Alekseenko, S. V., Nakoryakov, V. E. & Pokusavev, B. G. 1985 Wave formation on vertical falling liquid films. Int. J. Multiphase Flow 11, 607–627.CrossRefGoogle Scholar
Andreussi, P., Asali, J. C. & Hanratty, T. J. 1985 Initiation of roll waves in gas–liquid flows. AIChE Jl 31, 119–126.CrossRefGoogle Scholar
Andritsos, N. & Hanratty, T. J. 1987 Influence of interfacial waves in stratified gas–liquid flows. AIChE Jl 33, 444–454.CrossRefGoogle Scholar
Asali, J. C. & Hanratty, T. J. 1993 Ripples generated on a liquid film at high gas velocities. Int. J. Multiphase Flow 19, 229–243.CrossRefGoogle Scholar
Asali, J. C., Andreussi, P. & Hanratty, T. J. 1985 Interfacial drag and film height for vertical annular flow. AIChE Jl 31, 895–902.CrossRefGoogle Scholar
Benjamin, T. B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554–574.CrossRefGoogle Scholar
Binnie, A. M. 1957 Experiments on the onset of wave formation on a fluid flowing down a vertical plane. J. Fluid Mech. 2, 551–553.CrossRefGoogle Scholar
Bontozoglou, V. L. & Hanratty, T. J. 1989 Wave height estimation in stratified gas–liquid flows. AIChE Jl 35, 1346–1350.CrossRefGoogle Scholar
Cohen, L. S. & Hanratty, T. J. 1965 Generation of waves in concurrent flow of air and a liquid. AIChE Jl 11, 138–143.CrossRefGoogle Scholar
Cornish, V. 1934 Ocean Waves and Kindred Phenomena. Cambridge: Cambridge University Press.Google Scholar
Craik, A. D. D. 1966 Wind generated waves in thin films. J. Fluid Mech. 26, 369–392.CrossRefGoogle Scholar
Craik, A. D. D. 1968 Wind generated waves in contaminated liquid films. J. Fluid Mech. 31, 141–162.CrossRefGoogle Scholar
Dressler, R. F. 1949 Mathematical solution of the problem of roll waves in inclined open channels. Comm. Pure Appl. Math. 2, 149–194.CrossRefGoogle Scholar
Dressler, R. F. 1952 Stability of uniform flow and roll wave formation. US Natl Bur. Std. Circular 521, 237–241.Google Scholar
Hanratty, T. J. 1983 Interfacial instabilities caused by air flow over a thin layer. In Waves on Fluid Interfaces, ed. Meyer, R. E.. New York: Academic Press, pp. 221–259.CrossRefGoogle Scholar
Hanratty, T. J. 1991 Separated flow modeling and interfacial transport phenomena. Appl. Scient. Res. 48, 353–390.CrossRefGoogle Scholar
Hanratty, T. J. & Engen, J. M. 1957 Interaction between a turbulent air stream and a moving water surface. AIChE Jl 3, 299–304.CrossRefGoogle Scholar
Hanratty, T. J. & Hershman, A. 1961 Initiation of roll waves. AIChE Jl 7, 489–497.CrossRefGoogle Scholar
Henstock, W. H. & Hanratty, T. J. 1976 The interfacial drag and height of the wall layer in annular flows. AIChE Jl 7, 489–497.Google Scholar
Hewitt, G. F. & Hall-Taylor, N. S. 1970 Annular Two-Phase Flow. London: Academic Press.Google Scholar
Hurlburt, E. T. & Hanratty, T. J. 2002 Prediction of transition from stratified to slug and plug flows for long pipes. Int J. Multiphase Flow 28, 707–729.CrossRefGoogle Scholar
Lighthill, M. J. & Whitham, G. B. 1955 Flood movement in long rivers. Proc. R. Soc. Lond. A229, 291.Google Scholar
Lin, P. Y. & Hanratty, T. J. 1986 Prediction of the initiation of slugs with linear stability theory. Int. J. Multiphase Flow 12, 79–98.CrossRefGoogle Scholar
Loyd, R. J., Moffat, R. J. & Kays, W. M. 1970 The turbulent boundary on a plate: an experimental study of the fluid dynamics with strong favorable pressure gradients and blowing. Report No. HMT-13, Stanford University California.
McLean, J. W., Ma, Y. C., Martin, D. V. & Saffman, P. C. 1981 Three-dimensional instability of finite amplitude water waves. Phys. Rev. Lett. 46, 817–820.CrossRefGoogle Scholar
Meyer, R. E. (ed.) 1983 Waves on Fluid Interfaces. New York: Academic Press, pp. 221–259.
Miya, M., Woodmansee, D. E. & Hanratty, T. J. 1971 A model for roll waves in gas–liquid flow. Chem. Eng. Sci., 26, 1915–1931.CrossRefGoogle Scholar
Shearer, C. J. & Nedderman, R. M. 1965 Pressure gradient and liquid film thickness in concurrent upwards flow of gas/liquid mixtures: application to film cooler design. Chem. Eng. Sci. 20, 679–683.CrossRefGoogle Scholar
Soleimani, A. & Hanratty, T. J. 2003 Critical liquid flows for the transition from the pseudo-slug and stratified patterns to slug flow. Int. J. Multiphase Flow 29, 707–729.CrossRefGoogle Scholar
Stoker, J. J. 1957 Water Waves. New York: Interscience.Google Scholar
Taylor, G. I. 1963 Generation of ripples by wind blowing over a viscous liquid. In The Scientific Papers of Sir Geoffrey Ingram Taylor. ed. Batchelor, G. K.. Cambridge: Cambridge University Press, pp. 244–254.Google Scholar
Thorsness, C. B., Morrisoe, P. H. & Hanratty, T. J. 1978 A comparison of linear theory with measurements of the variation of shear stress along a solid wave. Chem. Eng. Sci. 33, 579–592.CrossRefGoogle Scholar
Whitham, G. B. 1974 Linear and Non-linear Waves. New York: John Wiley.Google Scholar
Woodmansee, D. E. & Hanratty, T. J. 1969 Base film over which roll waves propagate. AIChE Jl 15, 712–715.CrossRefGoogle Scholar
Würz, D. E. 1977 Flüssigkeits – Filmströmung unter einwirkung einer Uber-lufströmung. Thesis, Univ. Karlsruhe, Inst. für thermische strömung maschinen.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×