Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-19T02:20:10.689Z Has data issue: false hasContentIssue false

Chapter 6 - Shocks and Discontinuities

Published online by Cambridge University Press:  22 October 2009

Tamas I. Gombosi
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

It has been observed under certain conditions that most mediums in the space environment can experience abrupt changes of macroscopic parameters. In a broad sense shocks and discontinuities are defined as transition layers where the state of the fluid changes from one that is near an equilibrium state to a different one. Examples involve detonation waves in the atmosphere, shocks, and transition layers in the magnetosphere, the interplanetary medium, and in the Sun. In all these cases the transition layer is very narrow compared to the characteristic scale of the problem.

In this chapter we consider the fundamental theory of shocks and discontinuities in neutral gases and quasineutral plasmas.

Normal Shock Waves in Perfect Gases

In the perfect gas approximation shock waves are discontinuity surfaces separating two distinct gas states. In higher order approximations (such as the Navier—Stokes equations) the shock wave comprises a region where physical quantities change smoothly but rapidly. In this case the shock has a finite thickness, generally of the order of the mean free path.

Because the shock wave is a more or less instantaneous compression of the gas, it cannot be a reversible process. The energy for compressing the gas flowing through the shock wave is derived from the kinetic energy of the bulk flow upstream of the shock wave.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Shocks and Discontinuities
  • Tamas I. Gombosi, University of Michigan, Ann Arbor
  • Book: Physics of the Space Environment
  • Online publication: 22 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529474.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Shocks and Discontinuities
  • Tamas I. Gombosi, University of Michigan, Ann Arbor
  • Book: Physics of the Space Environment
  • Online publication: 22 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529474.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Shocks and Discontinuities
  • Tamas I. Gombosi, University of Michigan, Ann Arbor
  • Book: Physics of the Space Environment
  • Online publication: 22 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529474.007
Available formats
×