Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-16T11:25:08.186Z Has data issue: false hasContentIssue false

20 - Small body surface missions

Published online by Cambridge University Press:  12 August 2009

Andrew Ball
Affiliation:
The Open University, Milton Keynes
James Garry
Affiliation:
Universiteit Leiden
Ralph Lorenz
Affiliation:
The Johns Hopkins University
Viktor Kerzhanovich
Affiliation:
NASA Jet Propulsion Laboratory
Get access

Summary

Missions to small bodies differ from those to larger worlds because the low surface gravity means that an orbiter (or rendezvous) spacecraft can approach close enough to perform a surface mission while hovering (with little or no thrust) and the speed of a landing can be very low. This blurs the distinction between orbiters and landers, and may enable orbiter spacecraft to survive landing, as shown by the landing of NEAR on asteroid Eros. Low gravity also means that a landing vehicle may risk being lost entirely on rebound from the surface, or ejected by outgassing in the case of a comet nucleus. Anchoring systems may thus be required. On the positive side, the low gravity also makes it easy to achieve mobility by jumping, and to perform ‘touch and go’ surface-sampling manoeuvres (e.g. Yano et al., 2003; Sears et al., 2004). Most small bodies are highly irregular, and their gravitational fields can be challenging environments in which to navigate. Dust thrown up from the surface (whether from natural cometary activity or the action of a spacecraft) is another hazard. Many small bodies, particularly comets, are in elliptical orbits and so experience wide variations of temperature and solar power production with time and surface location.

Phobos 1F

The Phobos project involved two large Mars orbiters, Phobos 1 and Phobos 2 (Sagdeev et al., 1988; TsUP, 1988).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×