Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-09T09:18:30.784Z Has data issue: false hasContentIssue false

6 - Nongelling associating polymers

Published online by Cambridge University Press:  16 May 2011

Fumihiko Tanaka
Affiliation:
Kyoto University, Japan
Get access

Summary

This chapter presents some important nongelling binary associating mixtures. Throughout this chapter, we assume the pairwise association of reactive groups, the strength of which can be expressed in terms of the three association constants for A·A, B·B, and A·B association. We apply the general theory presented in Chapter 5 to specific systems, such as dimerization, linear association, side-chain association, hydration, etc. The main results are summarized in the form of phase diagrams.

Dimer formation as associated block-copolymers

The first system we study is a mixture of R{A1} and R{B1} chains, each carrying a functional group A or B at one end. Diblock copolymers are formed by the end-to-end association (hetero-dimerization). End groups A and B are assumed to be capable of forming pairwise bonds A·B by thermoreversible hetero-association. The hydrogen bond between acid and base pair is the most important example of this category.

For such mixtures, composite diblock copolymers R{A1}-block-R{B1} with a temporal junction are formed (Figure 6.1). The system is made up of a mixture of diblock copolymers (1,1), and unassociated homopolymers of each species (1,0) and (0,1). It is similar to the mixture of chemically connected diblock copolymers dissolved in their homopolymer counterparts, but its phase behavior is much richer because the population of the block copolymers varies with both temperature and composition.

Type
Chapter
Information
Polymer Physics
Applications to Molecular Association and Thermoreversible Gelation
, pp. 180 - 221
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tanaka, F.; Ishida, M.; Matsuyama, A., Macromolecules 24, 5582 (1991).CrossRef
[2] Tanaka, F., Polym. J. 34, 479 (2002).CrossRef
[3] Kielhorn, L.; Muthukumar, M., J. Chem. Phys. 107, 5588 (1997).CrossRef
[4] Tanaka, H.; Hashimoto, T., Macromolecules 24, 5398; 5713 (1991).CrossRef
[5] de Gennes, P. G., Scaling Concepts in Polymer Physics. Cornell University Press: Ithaca, NY, 1979.Google Scholar
[6] Leibler, L., Macromolecules 13, 1602 (1980).CrossRef
[7] Bates, F. S.; Fredrickson, G., Ann. Rev. Phys. Chem. 41, 525 (1990).CrossRef
[8] Hornreich, R. M.; Luban, M.; Shtrikman, S., Phys. Rev. Lett. 35, 1678–1681 (1975).CrossRef
[9] Haraguchi, M.; Nakagawa, T.; Nose, T., Polymer 36, 2567 (1995).CrossRef
[10] Haraguchi, M.; Nakagawa, T.; Nose, T., Polymer 37, 3611; 4223 (1996).CrossRef
[11] Lehn, J.-M., Supramolecular Chemistry–Concepts and Perspectives. VCH: Weinheim, 1995.CrossRefGoogle Scholar
[12] Ciferri, C., Supramolecular Polymers. Marcel Dekker: New York, 2000.Google Scholar
[13] Kato, T., Structure and Bonding 96, 95 (2000).CrossRef
[14] Weiss, R. G.; Terech, P., Molecular Gels: Materials with Self-Assembled Fibrillar Networks. Springer: Dordrecht, 2006.CrossRefGoogle Scholar
[15] Jacobson, H.; Stockmayer, W. H., J. Chem. Phys. 18, 1600; 1607 (1950).CrossRef
[16] Tobolsky, A. V.; Eisenberg, A., JACS 81, 780 (1959).CrossRef
[17] Scott, R. L., J. Phys. Chem. 1965, 69, 261; 352.CrossRef
[18] Wheeler, J. C.; Pfeuty, P., Phys. Rev. Lett. 46, 1409 (1981).CrossRef
[19] Wheeler, J. C.; Pfeuty, P., Phys. Rev. A 24, 1050 (1981).CrossRef
[20] Wheeler, J. C.; Pfeuty, P., J. Chem. Phys. 74, 6415 (1981).CrossRef
[21] Mayer, J. E.; Mayer, M. G., Statistical Mechanics. Wiley: New York, 1940.Google Scholar
[22] Truesdell, C., Annals of Mathematics 46, 144 (1945).CrossRef
[23] Dudowicz, J.; Freed, K. F.; Douglas, J. F., J. Chem. Phys. 111, 7116 (1999).CrossRef
[24] Dudowicz, J.; Freed, K. F.; Douglas, J. F., J. Chem. Phys. 112, 1002–1010 (2000).CrossRef
[25] Terech, P.; Weiss, R. G., Chem. Rev. 97, 3133 (1997).CrossRef
[26] Tanaka, F.; Ishida, M., Macromolecules 30, 1836 (1997).CrossRef
[27] Tanaka, F., Macromolecules 37, 605 (2004).CrossRef
[28] Yashima, E.; Matsushima, T.; Okamoto, Y., J. Am. Chem. Soc. 119, 6345 (1997).CrossRef
[29] Matsuyama, A.; Tanaka, F., Phys. Rev. Lett. 65, 341 (1990).CrossRef
[30] Ruokolainen, J.; ten Brinke, G.; Ikkala, O.; Torkkeli, M.; Serimaa, R., Macromolecules 29, 3409 (1996).CrossRef
[31] Ruokolainen, J.; Torkkeli, M.; Serimaa, R.et al., Macromolecules 29, 6621 (1996).CrossRef
[32] ten Brinke, G.; Ruokolainen, J.; Ikkala, O., Europhys. Lett. 35, 91 (1996).CrossRef
[33] ten Brinke, G.; Ikkala, O., Trends Polym. Sci. 5, 213 (1997).
[34] Ruokolainen, J.; Torkkeli, M.; Serimaa, R.; Komanschek, B. E.; ten Brinke, G., Phys. Rev. E 54, 6646 (1996).CrossRef
[35] Angerman, H.; ten Brinke, G., Macromolecules 32, 6813 (1999).CrossRef
[36] ten Brinke, G.; Ruokolainen, J.; Ikkala, O., Adv. Polym. Sci. 207, 113 (2007).CrossRef
[37] Tasaki, K., J. Am. Chem. Soc. 118, 8459 (1996).CrossRef
[38] Koningsveld, R.; Stockmayer, W. H.; Nies, E., Polymer Phase Diagrams–A Text Book. Oxford University Press: Oxford, 2001, p. 341.Google Scholar
[39] Anderson, G. R.; Wheeler, J. C., J. Chem. Phys. 73, 5778 (1980).
[40] Walker, J. S.; Vause, C. A., Phys. Lett. A 79, 412 (1980).CrossRef
[41] Goldstein, R. E.; Walker, J. S., J. Chem. Phys. 78, 1942 (1983).
[42] Walker, J. S.; Vause, C. A., Scientific American 256, 90 (1987).
[43] Narayanan, T.; Kumar, A., Physics Reports 249, 135–218 (1994).CrossRef
[44] Malcolm, G. N.; Rowlinson, J. S., Trans. Faraday Soc. 53, 921 (1957).CrossRef
[45] Saeki, S.; Kuwahara, N.; Konno, S.; Kaneko, M., Macromolecules 6, 247 (1973).
[46] Saeki, S.; Kuwahara, N.; Nakata, M.; Kaneko, M., Polymer 17, 685 (1976).CrossRef
[47] Dormidontova, E. E., Macromoles 35, 978 (2002).CrossRef
[48] Bekiranov, S.; Bruinsma, R.; Pincus, P., Phys. Rev. E 55, 577 (1997).CrossRef
[49] Heskins, M.; Guillet, J. E., J. Macromol. Sci. A2, 1441 (1968).CrossRef
[50] Fujishige, S.; Kubota, K.; Ando, I., J. Phys. Chem. 93, 3311 (1989).CrossRef
[51] Afroze, F.; Nies, E.; Berghmans, H., J. Mol. Structure 554, 55 (2000).CrossRef
[52] de Azevedo, R. G.; Rebelo, L. P. N.; Ramos, A. M.; Szydlowski, J.; de Sousa, H. C.; Klein, J., Fluid Phase Eq. 185, 189 (2001).CrossRef
[53] Rebelo, L. P. N.; Visak, Z. P.; de Sousa, H. C.et al., Macromolecules 35, 1887 (2002).CrossRef
[54] Milewska, A.; Szydlowski, J.; Rebelo, L. P. N., J. Polym. Sci., Polym. Phys. Ed. 41, 1219 (2003).CrossRef
[55] Okada, Y.; Tanaka, F., Macromolecules 38, 4465 (2005).CrossRef
[56] Zimm, B. H.; Bragg, J. K., J. Chem. Phys. 31, 526 (1959).CrossRef
[57] Poland, P.; Scheraga, H. A., Theory of Helix–Coil Transitions in Biopolymers. Academic Press: San Diego, CA, 1970.Google Scholar
[58] Baulin, V. A.; Halperin, A., Macromolecules 35, 6432 (2002).CrossRef
[59] Baulin, V. A.; Halperin, A., Macromol. Theory Simul. 12, 549 (2003).CrossRef
[60] Bazuin, C. G., in Mechanical and Thermophysical Properties of Polymer Liquid Crystals, Brostow, W. (ed.) Chapman & Hall: London, 1998.Google Scholar
[61] Bradfield, A. E.; Jones, B., J. Chem. Soc. Chem. Comm.2660 (1929).
[62] Jones, B., J. Chem. Soc.1874 (1935).
[63] Weygand, C.; Gabler, G., Z. Phys. Chem. 1940, B46, 270.
[64] Gray, J.; Jones, B., J. Chem. Soc., 678–683 (1954).CrossRef
[65] Shoji, M.; Tanaka, F., Macromolecules 35, 7460 (2002).CrossRef
[66] Maier, V. W.; Saupe, A., Z. Naturforsch. 13A, 564 (1958); 14A, 882 (1959); 15A, 287 (1960).
[67] McMillan, W. L., Phys. Rev. A 4, 1238 (1971).CrossRef
[68] Cahn, J. W., Tans. Metal. Soc. AIME 242, 166 (1968).
[69] Ormsted, P. D.; OPoon, W. C. K.; McLeish, T. C. B.; Terrill, N. J.; Ryan, A. J., Phys. Rev. Lett. 81, 373 (1998).CrossRef
[70] Flory, P. J., Proc. Roy. Soc., London A234, 73 (1956).CrossRef
[71] Miller, W. G.; Kou, L.; Tohyama, K.; Voltaggio, V., J. Polym. Sci.: Polymer Sym. 65, 91 (1978).
[72] Whittaker, E. T.; Watson, G. N., A Course of Modern Analysis, 6th edn. Cambridge University Press: Cambridge, 1969, p. 608.Google Scholar
[73] Tanford, C., The Hydrophobic Effects. Wiley: New York, 1980.Google Scholar
[74] Guenet, J. M., Thermoreversible Gelation of Polymers and Biopolymers. Academic Press: London, 1992.Google Scholar
[75] te Nijenhuis, K., Adv. Polym. Sci. 130, 1 (1997).CrossRef
[76] Porte, G.; Appell, J.; Poggi, Y., J. Phys. Chem. 84, 3105 (1980).CrossRef
[77] Porte, G.; Appell, J., J. Phys. Chem. 85, 2511 (1981).CrossRef
[78] Appell, J.; Porte, G., J. Coll. Interface Sci. 81, 85 (1981).CrossRef
[79] Appell, J.; Porte, G.; Poggi, Y., J. Coll. Interface Sci. 87, 492 (1981).CrossRef
[80] Shikata, T.; Hirata, H.; Kotaka, T., Langmuir 3, 1081 (1987); 4, 354 (1988); 5, 398 (1989).CrossRef
[81] Shikata, T.; Hirata, H.; Kotaka, T., J. Phys. Chem. 94, 3702 (1990).CrossRef
[82] Candau, S. J.; Hirsch, E.; Zana, R.; Delsanti, M., Langmuir 2, 1225 (1989).CrossRef
[83] Hofmann, H.; Rehage, H., Mol. Phys. 5, 1225 (1989).
[84] Degiorgio, V.; Corti, M., Physics of Amphiphiles: Micelles, Vesicles and Microemulsions. North-Holland: Amsterdan, 1985.Google Scholar
[85] Sakaguchi, Y.; Shikata, T.; Urakami, H.; Tamura, A.; Hirata, H., J. Electron Microsc. 36, 168 (1987).
[86] Clausen, T. M.; Vinson, P. K.; Minter, J. R.; Davis, H. T.; Talmon, Y.; Miller, W. G., J. Phys. Chem. 96, 474 (1992).CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×