Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-27T19:25:28.542Z Has data issue: false hasContentIssue false

15 - Intermission

from Part II - Classical discrete time mechanics

Published online by Cambridge University Press:  05 May 2014

George Jaroszkiewicz
Affiliation:
University of Nottingham
Get access

Summary

This chapter forms a natural divide half-way into the book. In the first half, we discussed the principles of discrete time (DT) classical mechanics (CM). In the second half we focus mainly on quantum principles. This chapter is a good place in which to take stock of what we have done, what we plan to do, and how the two halves of the book are related. The common theme is Lee's approach to DT mechanics, discussed in Chapter 10.

As we implied previously, theorists whose work is relevant to us can be classified into two types: the applied mathematicians and the mathematical physicists, who may also be called fundamentalists. This division is based not on any value judgements but on the motivations and ambitions driving a theorist's work, which are generally easy to identify.

The applied mathematicians fall into two categories. The first consists of those interested in finding better ways of understanding CM and, if necessary, finding ever better approximations to it. They explore DT CM with that in mind and are generally not remotely interested in quantum mechanics (QM). The second category consists of quantum theorists, such as Bender, who develop DT numerical simulation to approximate standard QM. Lattice gauge theorists also fall into the applied group, since their discretization of spacetime is regarded at all times as an approximation to the continuum.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Intermission
  • George Jaroszkiewicz, University of Nottingham
  • Book: Principles of Discrete Time Mechanics
  • Online publication: 05 May 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139525381.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Intermission
  • George Jaroszkiewicz, University of Nottingham
  • Book: Principles of Discrete Time Mechanics
  • Online publication: 05 May 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139525381.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Intermission
  • George Jaroszkiewicz, University of Nottingham
  • Book: Principles of Discrete Time Mechanics
  • Online publication: 05 May 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139525381.016
Available formats
×