Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-26T07:43:57.307Z Has data issue: false hasContentIssue false

10 - Lee's approach to discrete time mechanics

from Part II - Classical discrete time mechanics

Published online by Cambridge University Press:  05 May 2014

George Jaroszkiewicz
Affiliation:
University of Nottingham
Get access

Summary

Lee's discretization

Time is a continuous parameter in standard Schrödinger wave mechanics, and quantum wavefunctions are differentiable functions of that parameter. We shall refer to this as temporal differentiability. Temporal differentiability is assumed in Dirac's more abstract formulation of quantum mechanics, where state vectors in some abstract Hilbert space and Hermitian operators over that space depend on continuous time (CT) (Dirac, 1958). The same is assumed in relativistic quantum field theories, where quantum field operators in the Heisenberg picture are differentiable over time and space.

Temporal differentiability is a necessary condition for the existence of the quantum wave equations and operator field equations found in such theories. Unfortunately, these differentiable equations are usually impossible to solve exactly, so various techniques such as perturbation theory and computer simulation are employed to make suitable approximations.

Numerical techniques on their own, however, are insufficient to answer questions of principle, such as the meaning of quantized spacetime. A more principled approach to the solution of quantum differential equations, namely the path integral (PI), was developed, exploited and popularized principally by Feynman (Feynman and Hibbs, 1965). In some situations, such as quantum gravity, the PI was found to be virtually the only technology available to discuss the quantum physics. We discuss this approach in greater detail in Chapter 18.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×