Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-16T15:39:49.075Z Has data issue: false hasContentIssue false

17 - The Expectations and Pricing Kernels

Published online by Cambridge University Press:  05 September 2012

Stephen F. LeRoy
Affiliation:
University of California, Santa Barbara
Jan Werner
Affiliation:
University of Minnesota
Get access

Summary

Introduction

In Chapter 6 we showed that the payoff pricing functional – and also its extension, the valuation functional – can be represented either by state prices or by risk-neutral probabilities. In this chapter we derive another representation of the payoff pricing functional, the pricing kernel. The existence of the pricing kernel is a consequence of the Riesz representation theorem, which says that any linear functional on a vector space can be represented by a vector in that space.

We begin by introducing the concepts of inner product, orthogonality, and orthogonal projection. These concepts are associated with an important class of vector spaces, the Hilbert spaces, to which the Riesz representation theorem applies. In the finance context, the Riesz representation theorem implies that any linear functional on the asset span can be represented by a payoff. Two linear functionals are of particular interest: the payoff pricing functional and the expectations functional, which maps every payoff into its expectation. Their representations are the pricing kernel and the expectations kernel, respectively.

Hilbert space methods are important for the study of the Capital Asset Pricing Model and factor pricing in the following chapters. Our treatment of these methods here is mathematically superficial, for our interest is in arriving quickly at results that are applicable in finance. In particular, the finite-dimensional contingent claims space RS is for us the primary example of a Hilbert space. The most important applications of Hilbert space methods come when the payoff space is infinite-dimensional.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×