Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-23T04:17:40.166Z Has data issue: false hasContentIssue false
Coming soon

1 - Introduction

Eugene D. Commins
Affiliation:
University of California, Berkeley
Get access

Summary

What this book is about

Quantum mechanics is an extraordinarily successful theory. The quantum mechanical description of the structures and spectra of atoms and molecules is virtually complete, and in principle, this provides the basis for understanding all of chemistry. Quantum mechanics gives detailed insight into many thermal, electrical, magnetic, optical, and elastic properties of condensed materials, including superconductivity, superfluidity, and Bose-Einstein condensation. Quantum mechanics underlies the theory of nuclear structure, nuclear reactions, and radioactive decay. Quantum electrodynamics (QED), an outgrowth of quantum mechanics and special relativity, is a very successful and detailed description of the interaction of charged leptons (i.e., electrons, muons, and tau leptons) with the electromagnetic radiation field. More generally, relativistic quantum field theory, the extension of quantum mechanics to relativistic fields, is the basis for all successful theoretical attempts so far to describe the phenomena of elementary particle physics.

We assume that you, the reader, have some elementary knowledge of quantum mechanics and that you know something about the historical development of the subject and its main principles and methods. We take advantage of this background, after a brief mathematical review in Chapter 2, by stating the rules of quantum mechanics in Chapter 3. An advantage of this approach is that all the rules are set forth in one place so that we can focus on them. In Chapter 3 we also describe application of the rules to several real physical situations, most significantly experiments with photon polarizations. Following some development of wave mechanics (Chapter 4), we illustrate the rules with additional examples (Chapter 5). We then develop the theory further in subsequent chapters, giving as many examples as we can from the physical world.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Eugene D. Commins, University of California, Berkeley
  • Book: Quantum Mechanics
  • Chapter DOI: https://doi.org/10.1017/CBO9781107565203.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Eugene D. Commins, University of California, Berkeley
  • Book: Quantum Mechanics
  • Chapter DOI: https://doi.org/10.1017/CBO9781107565203.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Eugene D. Commins, University of California, Berkeley
  • Book: Quantum Mechanics
  • Chapter DOI: https://doi.org/10.1017/CBO9781107565203.002
Available formats
×